XML Professional Publisher:

Fonts

for use with XPP 9.7
March 2024

Legal Notice

Copyright © 2003-2005, 2009, 2012-2024 SDL as part of the RWS Holdings Plc group of
companies ("RWS Group”).

SDL means SDL Limited and its subsidiaries and affiliates. All intellectual property rights
contained herein are the sole and exclusive rights of SDL. All references to SDL shall mean
SDL Limited and its subsidiaries and affiliates details of which can be obtained upon
written request.

All rights reserved. Unless explicitly stated otherwise, all intellectual property rights
including those in copyright in the content of this website and documentation are owned
by or controlled for these purposes by SDL. Except as otherwise expressly permitted
hereunder or in accordance with copyright legislation, the content of this site, and/or the
documentation may not be copied, reproduced, republished, downloaded, posted,
broadcast or transmitted in any way without the express written permission of SDL.

XPP is a registered trademark of SDL. All other trademarks are the property of their
respective owners. The names of other companies and products mentioned herein may be
the trademarks of their respective owners. Unless stated to the contrary, no association
with any other company or product is intended or should be inferred.

This product may include open source or similar third-party software, details of which can
be found stocs v con

Although RWS Group takes all reasonable measures to provide accurate and
comprehensive information about the product, this information is provided as-is and all
warranties, conditions or other terms concerning the documentation whether express or
implied by statute, common law or otherwise (including those relating to satisfactory
quality and fitness for purposes) are excluded to the extent permitted by law.

To the maximum extent permitted by law, RWS Group shall not be liable in contract, tort
(including negligence or breach of statutory duty) or otherwise for any loss, injury, claim
liability or damage of any kind or arising out of, or in connection with, the use or
performance of the Software Documentation even if such losses and /or damages were
foreseen, foreseeable or known, for: (a) loss of, damage to or corruption of data, (b)
economic loss, (c) loss of actual or anticipated profits, (d) loss of business revenue, (e) loss
of anticipated savings, (f) loss of business, (g) loss of opportunity, (h) loss of goodwill, or
(i) any indirect, special, incidental or consequential loss or damage howsoever caused.

All Third Party Software is licensed “as is.” Licensor makes no warranties, express,
implied, statutory or otherwise with respect to the Third Party Software, and expressly
disclaims all implied warranties of non-infringement, merchantability and fitness for a
particular purpose. In no event will Licensor be liable for any damages, including loss
of data, lost profits, cost of cover or other special, incidental, consequential, direct,
actual, general or indirect damages arising from the use of the Third Party Software or
accompanying materials, however caused and on any theory of liability. This limitation
will apply even if Licensor has been advised of the possibility of such damage. The
parties acknowledge that this is a reasonable allocation of risk.

Information in this documentation, including any URL and other Internet website
references, is subject to change without notice. Without limiting the rights under
copyright, no part of this may be reproduced, stored in or introduced into a retrieval
system, or transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission of
RWS Group.

Printed in U.S.A.

ii

http://docs.rws.com

Contents

Part I Installing Fonts
Chapter 1 Installing Fonts

Understanding the Installation Process 1-2
Obtain the Proper Fonts and Font Files 1-2
Typel BaseFonts 1-2
Typel CIDFonts 1-3
OpenType Baseand CID Fonts 1-4
Putting Fonts in the Correct Directories 1-4
Font Directories 1-5
Using Font Copy 1-7
Running Font Copy 1-7
Using Build FAST 1-10
Running Build FAST 1-10
Warning/Error Messages from Build FAST 1-18
After Running Build oo 1-19
Follow-up for TextFonts 1-20
Follow-up for PiFonts 1-20

Resolving Unidentified PSN Names During Build FAST
Processing 1-21
Troubleshooting Fonts 1-23
Troubleshooting Tips 1-23
Verifying that You Have a Valid Font File 1-23
PostScript Typel Base Font 1-24
TypelCIDFont 1-24

Fonts Contents iii

OpenType Font 1-25

Viewing Output File 1-26
Modifying the Encoding Table 1-27
Veritying the Directory Structure 1-27

Part I1 Understanding XPP Fonts and Font Specs
Chapter 2 Introduction to Fonts
Understanding Xyvision Standard Format 2-2
Xyvision Standard Format (XSF) 2-2
Xyvision Character Set (XCS) 2-2
The Conversion Process 2-3
PostScript Fonts 2-4
Standard 35 PostScript Type 1 Base Fonts 2-4
XPP-delivered Noto and Pi OpenType Fonts 2-6
Embedding Fonts 2-9
PSRESOURCEPATH Environment Variable 2-9
Font Download Tables 2-10
Format of an Enable Font Download Table 2-10
Font Download Table (table_1) 2-10

Creating Custom Font Download Tables 2-11

Adding Fonts to Your Font Download Table 2-11
Activating Your Enable Font Download Table 2-11

Specs Needed for Display and Output 2-12
How the System Uses the Specs 2-13
When Do I Need to Edit Font Specs? 2-15
How Do I Create New Font Specs? 2-15

Unicode Capabilities 2-17

Chapter 3 The Xyvision Character Set Spec (XCS)

Understanding the XCSSpec 3-2
When to View the XCSSpec 3-3
Accessing the XCS Spec from PathFinder 3-3
Accessing the XCS Spec from the Operating System 3-3
Learning About the Files Generated from the XCS Spec 3-4
ASCIItoXSFFilesoiiiio... 3-4
XyASCII escape SeqUENCES 3-5

iv Contents Fonts

Chapter 4

Fonts

XSFto ASCII File 3-5

XSFto Terminal File 3-6
Obtaining Updates to the Standard XCSSpec 3-7
Copyingan XCSSpec 3-7
Updating the XCSSpec 3-8
Modifying the XCSSpec, 3-9
Editing or Adding a Named Character Entity String 3-9
Editing or Adding a Unicode Value 3-10
Assigning a Custom Character 3-10
Editing the Name and Description Fields 3-10
Running GenXCS 3-11
Locating Unused XyASCII Sequences 3-12
Understanding the Structure of the XCSSpec 3-13
XCSSpecFields 3-13
Header Fields 3-14
RuleFields 3-14
Print XCS Layout 3-17

The Keyboard Map Spec (KB)

About Keyboards and Key Caps 4-2
Standard and Alternate Keyboards 4-2
Displaying Characters 4-4

Difficulty Displaying Characters 4-5

The Keyboard Spec (KB) 4-7

Structure of the KBSpec 4-7
Header Fields 4-8
Rule Fields 4-8

Organization of KBSpecRules 4-9

Modifying KB Specs 4-12

When Do I Need to Modify KB Specs? 4-12
Modifying an Existing KBSpec 4-12
CreatingaNew KBSpec 4-13

Mapping a Character or a StringtoaKey Cap 4-13

Print a Keyboard Mapping 4-14

Updating KBSpecs, 4-17
Copying New Keyboard Specs 4-17
Copying Individual KB Specs 4-17

Contents v

Chapter 5

Chapter 6

Chapter 7

Vi

Contents

Font Libraries and Specs

Managing Font Libraries 5-2
Source and Destination Font Libraries 5-2
Naming Font Libraries 5-3
Do I Need More Than One Font Library? 5-3
Font Libraries in PathFinder 5-4
File System Location 5-4
Accessing Font Libraries 5-4

Managing FontSpecs o L. 5-6
Naming Font Specs 5-7
Accessing FontSpecs oL 5-8
When to Edit FontSpecs 5-9
Copying Font Specs through PathFinder 5-10

Copying a Spec to the Same Library 5-10
Copying a Spec toa New Library 5-10
Field Notation 5-11
Changing Field Notation 5-11
Using Field Notation 5-11
Header and Rule Fields 5-12
Editing Spec Fields 5-12
Overriding PTS, PSE, and FGS Header Fields 5-12

The Phototypesetter Spec (PTS)

Understanding the PTSSpec 6-2
Accessing PTSSpecs L. 6-2
Delivered PTS Specs 6-2

AFMFiles 6-2
Kerning Data 6-3

OTFFiles 6-4

The Relationship Between PTS Spec and PSN Spec for Typel

Fonts 6-4

Naminga PTSSpec 6-4

Structure of aPTSSpec 6-5
Header Fields 6-5
RuleFields 6-9

The Pseudofont Spec (PSF)

Understanding the PSFSpec 7-2
Accessing PSFSpecs L 7-2
Setting Up PSFSpecs 7-3
Fonts

Naminga PSFSpec 7-3

Structureof a PSFSpec L. 7-3
Header Fields 7-4
Rule Fields 7-6
Pseudofont Commands 7-8

Examples of Defining Pseudo Characters 7-11

Example 1 7-11
Obtaining information from the PTSSpec 7-12
Calculating the custom pseudo character width 7-12
Writing the Commands field entry 7-12
Assigning a Unicode Number 7-12

Example 2 7-13
Obtaining information from the PTSSpec 7-13
Calculating the pseudo character widths 7-14
Writing the Commands field entries 7-15
Assigning Unicode Numbers 7-15

Chapter 8 The PostScript Name Spec (PSN)

The PSN Spec 8-2
PSN_2XCS SPEC 8-2
psn_custom Spec 8-3
The Build FAST Process 8-4
Accessing the PSN'Spec 8-4
The PSN Spec Fields 8-4

Chapter 9 The FAST Generation Spec (FGS)

Understanding the FGSSpec 9-2
Delivered FGS SpecsXPP delivers FGS Specs to the 9-2
Accessing the FGSSpec 9-2
When to Edit FGSSpecs 9-2
GenFAST 9-3

Running GenFAST 9-3

Setting Up FGSSpecs 9-4
Naming an FGSSpec 9-4
Structure of an FGSSpec ool 9-7

Header Fields 9-8
RuleFields 9-10
Examples of Style Code Overrides Field Entries 9-12
Example1 9-12
Example2 9-12

Fonts Contents vii

Chapter 10 The FAST Generation Exception Spec (FGX)

Understanding the FGX Spec 10-2
Accessing the FAST Generation Exception Spec 10-2
Setting Up FGX Specs 10-3
Naming an FGX Spec 10-3
Structure of an FGX Spec 10-3
Header Fields 10-4
RuleFields 10-4

Chapter 11 Creating and Viewing FASTs

The FAST Generation Process (GenFAST) 11-2
When Do I Run GenFAST? 11-2
How GenFAST Reads the Font Specs 11-3
Example of GenFAST 11-5
Running GenFAST 11-7
Font Access Tables (FASTs) 11-9
Viewing Charactersina FAST 11-9
Viewing Pseudo Charactersina FAST 11-9
Listing All FASTs in a Font Library 11-11
Veritying Correct Widths in FASTs 11-15
Before Running the Font Width Test Utility 11-15
Running the Font Width Test Utility on a Single FAST 11-15
Running the Font Width Test on Multiple FASTs 11-17
Using the Command Line 11-17
Using PathFinder 11-18
Correcting Width Errors 11-18

Chapter 12 The Font Variant Spec (FV)

Understanding the FV Spec 12-2
Specifyingan FV Spec 12-5
When to Editan FV Spec 12-5

Setting UpanFV Spec 12-6
Namingan FV Spec 12-6
Accessingan FV Spec o L 12-7
Structure ofan FV Spec 12-7
Header Fields 12-8
Rule Fields 12-10

viii Contents Fonts

Chapter 13

Chapter 14

Chapter 15

Fonts

The Typesetter Font Map Spec (TSF)

Understanding the TSESpec 13-2
When do I Need a TSFSpec? 13-2
Naming the TSFSpec 13-2
How XPP Uses the TSFSpec 13-2

Setting Up the TSFSpec 13-3
Accessing the TSFSpec 13-3
Structure of the TSFSpec 13-3

Header Fields 13-4
Rule Fields 13-4

Encoding Tables

Encoding Tables for PostScript Fonts 14-2
Non-Standard Typel Font Encodings 14-3

Reconciling Unencoded Characters for Typel Fonts 14-4
Handling More than 256 Glyphs 14-4
Unencoded Characters Beyond the 75 XPP Used to Provide .. 14-4

Reconciling a Few Unencoded Characters 14-4
Reconciling Many Unencoded Characters 14-6

The Kerning Pairs Spec (KP)

Understanding the KPSpec 15-2
Differentiating Between the KP Spec and the KP File 15-2
How Composition Uses the KP File 15-3
When to Edit KPSpec 15-4

Delivered KPSpecs 15-4
Kerning Pairs Data in Typel Font AFM Files 15-5

Kerning Pairs Libraries 15-6
KP Specs in the Font Spec Library 15-6

Setting UpaKPSpec 15-7
Naminga KPSpec 15-7
Accessing KPSpecs 15-7
StructureofaKPSpec L. 15-7
Header Fields 15-8
Rule Fields 15-8

Generating Kerning Pairs Test Divisions 15-10
Running the kp_pairs Utility 15-10
Notes About the Utility 15-11

Contents ix

Chapter 16

Chapter 17

X

Contents

Related Information

The Ligature/Accent Replacement Spec (RP)

Understanding the RP Spec
Unicode Non-spacing Marks
Replacing Accents
Replacing Characters with a Ligature
How Composition Uses the RPSpec
How Composition Uses the Lig/Accent Replace Field
Accessingthe RPSpec L.
Editing the RPSpec

The Standard RPSpec
Ligatures
Accents

Lower and Uppercase Accents in Font
Lowercase Accents Only in Fonts

Structure of the RPSpec
Header Fields
Rule Fields
Examples of RP SpecRules

Example1
Example2
Output String Field

Viewing Ligature/Accent Replacements
Line Editor
Softkey Menu
The Status Window,

Accents Over Algorithmic Small Caps

Moving Accents Over Characters

Setting Up PSFs for Correct Accent Placement

Fonts

Appendix A

Appendix B

Appendix C

Fonts

Spec Quick Reference

Status, Tips, & Troubleshooting

Checking Font Status B-2
Font Messages B-4
Font Messages from Build FAST B-5
Tipsand Hints B-7
Troubleshooting Type of Font B-8
Troubleshooting Output of OpenType/TrueType Fonts B-8
Mapping Unmapped Open Type Font Glyphs with
Psfmtdrv B-8
Sample Typel Font Encoding Tables
Adobe StandardEncoding Table C-2
XPP Extended Character Set Encoding Table C-4
Extended PostScript Character Set C-5
Symbol Character Set Encoding Table C-9
Zapf Dingbat Charater Set Encoding Table C-10
Glossary
Index
Contents xi

Figures
2-2

4-1
4-2

6-1
6-2

7-1
7-2
7-3

8-1
8-2

Displaying and Outputting Fonts 2-14
Keyboard Map Spec 4-7
Sample Keyboard Displaying Default Values 4-16
AFM File Glyph Information 6-3
Phototypesetter Spec 6-5
PseudofontSpec 7-4
Examle PSFSpec 7-11
PTS Spec: pts_00501.sde 7-14
Top of the PostScript to Unicode, psn_ps2xcs Spec 8-2
The PostScript to Unicode psn_custom Spec 8-3
FAST Generation Spec 9-7
FAST Generation Exception Spec 10-3
The GenFAST Process 11-3
How GenFAST Reads the Font Specs 11-4
GenFAST Example .. 11-6
Sample of FAST (VEX Spec) 00501—NotoSerif-Regular 11-9
Sample of View Pseudo FAST (VPX Spec) 00030—Times Roman
... 11-10
Sample section of the font width test on NotoSerif-Regular
(00501) ..o 11-16
Font Variant Spec 12-7
Font size comparison of Small Caps, Upper case, Lower case,
and Mixed case letters 12-9
Characters Placed Without and With Kerning 15-2
How the System Applies Pairs and Track Kerning 15-4
Example of KP Specs in the Font Library 15-6
How Composition Uses the RPSpec 16-4
Ligature/Accent Replacement Spec 16-12
PTS Spec Rules for Accents pts_00025 17-4
PSF Spec psf_acct333 Rules, 17-5
New FGSSpec 17-5
New Ruleinthe FV Spec 17-6
Font Information in the General Status Window B-2
Font Information in the Line Status Window B-3
Adobe Standard Encoding Table C-2
XPP “extended” Encoding Table C4
Fonts

xii

Contents

C-3 Symbol (non-text) Encoding Table C-9
C-4 Zapf Dingbat encoding table C-10

Fonts Contents xiii

Tables

1-1
1-1
2-1

2-1
2-2

3-1
3-2
3-3
3-3
3-3

4-1

4-1
4-2
4-3
4-3
4-4
4-4

5-1
5-2
5-2
5-3
5-4

7-1

7-1
7-2

9-1
9-2
9-3
9-3
11-1
11-1

11-1

xiv Contents

XPP Font Locations 1-5
XPP Font Locations (Continued) 1-6
Standard 35 PostScript Fonts 2-4
Standard 35 PostScript Fonts (Continued) 2-5
Specs Needed to Display/Output Characters 2-12
Files Generated from the XCSSpec 3-4
XCSSpec Header Fields 3-14
XCSSpecRule Fields 3-15
XCS Spec Rule Fields (Continued) 3-16
XCS Spec Rule Fields (Continued) 3-17
XPP-delivered Keyboards 4-3
XPP-delivered Keyboards (Continued) 4-4
KB Spec Header Fields 4-8
KBSpecRule Fields 4-8
KB Spec Rule Fields (Continued) 4-9
KBSpecRules 4-10
KB Spec Rules (Continued) 4-11
Font Spec Names and Descriptions 5-6
Naming Conventions for Font Specs and Files 5-7
Naming Conventions for Font Specs and Files (Continued) 5-8
When to Edit the FontSpecs 5-9
Overriding Spec Header Fields 5-12
Pseudofont Commands 7-8
Pseudofont Commands (Continued) 7-9
Converting Octal PTS Codes to Decimal 7-10
Recommended FGS Spec Naming Conventions for

NotoSansSymbols Fonts Secondary FASTs 9-5
Recommended FGS Spec Naming Conventions for Deprecated

Typel Fonts Secondary FASTs 9-6

Recommended FGS Spec Names for Deprecated Typel Pi Fonts . 9-6
Recommended FGS Spec Names for Deprecated Typel Pi

Fonts (Continued) 9-7
Font Description File for the Xnoto Library ~ 11-11
Font Description File for the Xnoto Library (Continued) 11-12
Font Description File for the Xnoto Library (Continued) 11-13

Fonts

Fonts

11-1

12-1

12-2

16-1
16-2
16-2

16-3
16-3
16-4

B-1

B-1
B-2
B-2

C-1
C1

C-1

Font Description File for the Xnoto Library (Continued) 11-14

How Composition Obtains Character Info (Non-CSS-XML

Mode) ... 12-3
How Composition Obtains Character Info (CSS-XML Mode) 12-4
Ligature Replacement Rules 16-6
Rules for fonts with Both Lower- and Uppercase Accents 16-7
Rules for fonts with Both Lower- and Uppercase
Accents (Continued) 16-8
Rules for fonts with Lowercase Accents Only 16-9
Rules for fonts with Lowercase Accents Only (Continued) 16-10
Defined Entries for the Ligature Mask Field 16-15
Spec Quick Reference A-1
Spec Quick Reference (Continued) A-2
Spec Quick Reference (Continued) A-3
Font Messages B-4
Font Messages (Continued) B-5
Messages when you click the Apply button in Build FAST B-5
Messages when you click the Apply button in Build
FAST (Continued) B-6
Tips and Hints for Fonts B-7
XPP Extended Characters by Font Position and Name C-5
XPP Extended Characters by Font Position and
Name (Continued) C-6
XPP Extended Characters by Font Position and
Name (Continued) C-7
XPP Extended Characters by Font Position and
Name (Continued), C-8
Contents xv

xvi Contents Fonts

Fonts

About This Manual

This manual is divided into two parts:

e Part I: Installing Fonts—How to install new fonts for use with XPP
and use the font utilities.

e Part II: Managing Fonts

—An introduction to fonts, characters and keyboards, the Xyvision
Standard Format and Xyvision Character Set, display fonts and
output device fonts

—How to manage font libraries, set up font specs for composition and
output, generate Font Access Tables (FASTs) and access the FASTs.

—Setting up specs to accommodate details in font appearance such as
kerning, ligatures, and accent placement.

Fonts does not address:

® Loading fonts on your output devices. Refer to the documentation
provided by the output device manufacturer for information on
loading fonts onto your particular output device.

About This Manual xv

Where Do I Start?

Where Do I Start?

This manual is for those who have experience with fonts. RWS recommends
that you use this manual to accompany XPP font training.

If you need to...

—_

Install a new font (including CID font) or use the font utilities: Chapter
Font Copy and Build Font FAST.

Learn about Xyvision Standard Format and output device fonts. Chapter
Get an overview of the steps involved in setting up fonts for the
Xyvision application.

Learn about the Xyvision Character Set. hapter
Learn about keyboard maps. hapter
Create or manage font libraries and font specs. Learn general hapter
information about editing font specs.

Edit the font width specs: PTS, PSE, PSN, FGS, FGX. hapters 6-1

Run GenFAST or the Font Width utility. Learn about Font Access hapter 1
Table (FAST) specs.

()

2

N

S

= =[S al ||l N ~
)

Learn about the Font Variant Spec. hapter 1
Learn about the Typesetter Font Map Spec. Chapter 13
Learn about encoding tables. Chapter 14

Learn about the Kerning Pairs Spec. hapter 1

Learn about accent and ligature control. hapter 1

NS\ |G

Learn how to adjust the placement of accents over PostScript Chapter 1
small caps fonts.

xvi About This Manual Fonts

Conventions Used in This Manual

Conventions Used in This Manual

This manual uses a set of symbolic, typographic, and terminology
conventions to categorize specific information. Take a few moments to
become familiar with these conventions before you use this manual.

Convention

Description

Bold

Bold type, used in procedures, indicates the object of the
action. It may be a menu option, a push button, or a field,
and so forth. For example, “select Open” means select the
menu option called Open. Position cursor means to move the
cursor to a specific location. Enter appropriate information
means that you enter information that is appropriate for your
site or for the specific job.

Bold may be used elsewhere in the manual to denote
emphasis.

Key

Capital first letter and the word “key” indicates a key on the
keyboard. Capital first letter and the words “Softkey menu”
indicate the menu pad to the right of the XyView. Unless
otherwise indicated, this manual assumes that you press the
Enter key at the end of a command line.

Key+Key

This sequence indicates a Shortcut Key combination. Hold
down the first key while also pressing the second key, that is
ALT+F4 means to hold down the Alt key while also pressing
the F4 key.

Message

A monospaced typeface indicates an application’s response
to your action. For example, “the message Enter Value
appears” means that the application displays the words
“Enter Value.”

Italics

In running text, an italic typeface indicates a new term; for
example, “The replacement string of characters is the output
string.”

In a system message, a field entry, or an argument to a
command, an italic typeface indicates a variable. For
example, filename is a variable in the message “Can’t open
filename.”

Italics are also used for the names of programs, such as Perl.

Quotation marks indicate that you should enter exactly what
the instructions tell you to enter. For example, type “yes”
means to type the letter y, the letter e, and the letter s.

Reverse-video square brackets represent tags in standard
XPP. Tags are general-purpose commands defined in the Item
Format Spec and embedded in a document. They generally
format logical components of text, such as chapter openings,
headers, or lists. For example, the tag for beginning a chapter
might be [ichapll.

Fonts

About This Manual xvii

Conventions Used in This Manual

Convention Description

Reverse-video angle brackets represent XPP-supplied macros
(XyMacros) and user-defined macros. XyMacros are
commands embedded in text to set or change formatting or
typographic style. For example, the XyMacro to end a page is
epll.

Reverse-video angle brackets also represent tags when you
use XPP in either XML or SGML mode. Note that when in
XML or SGML mode, XPP does not use the conventional
reverse-video square brackets.

2xooh Reverse-video angle brackets with a beginning question
mark represent macros when using XPP in SGML mode.

2o Reverse-video angle brackets with a beginning and ending
question mark represent macros when using XPP in XML
mode.

When entering values for some arguments in macros and for some fields in
specs, you must qualify the value by specifying a unit of measure. The
available unit qualifiers are:

® q — Points

® p — Picas

e ¢ — Ciceros

e d — Didots

® i —Inches

e m — Millimeters

k — Kyus
® n — Microns (XPP units)

e 7z —Centimeters
For example, 6q means 6 points, 4p means 4 picas.

Notes:

® You can also use pc, pt, in, mm, and cm in fields where the system allows the
standard ISO unit abbreviations.

® For fields in specs, no more than two decimal places can be entered for Points,
Inches, Didots, Centimeters, Millimeters, or Kyus units. If a more precise
value is needed, use the equivalent value in Microns (XPP units).

xviii About This Manual Fonts

For More Information

For More Information

This manual is part of a comprehensive document set. Other documents
describe topics such as:

® Basic skills needed to be productive on the XML Professional
Publisher (XPP).

e Tables, XyMacros, and system administration.

e Optional applications, such as Classification Marking, Electronic
Notes, Loose-leaf, CITI, and Math.

Refer to XML Professional Publisher: XPP Document List, for a complete list of
documents and their descriptions.

Fonts About This Manual xix

For More Information

xx About This Manual Fonts

Part 1

Installing Fonts

Fonts

Chapter 1

Installing Fonts

You can install PostScript Type 1, CID, or OpenType fonts on the XPP
server. This chapter contains the following installation information:

¢ Understanding the installation process
¢ Using Font Copy
¢ Using Build FAST

e Troubleshooting fonts

The remaining chapters in this manual describe the various font specs and
the process for managing your fonts.

Installing Fonts ~ 1-1

Understanding the Installation Process

Understanding the Installation Process

XPP delivers software with the 163 Noto OpenType fonts and two XPP Pi
fonts already set up for use on your system. If you need additional fonts,
you will have to obtain, install and prepare them for use by your XPP
software.

Installing new fonts involves three steps:
1. Obtain the fonts from a font vendor.

2. Put the fonts in the correct directories on your XPP server using Font
Copy, an XPP utility.

3. Create the corresponding font width and setup specs in the XPP
application using Build FAST, an XPP utility.

Note: If you want to install a Pi font, RWS strongly advises that you have a good
understanding of the XPP font environment. If you do not have this foundation,
RWS recommends that you read the remaining chapters of this manual.

Obtain the Proper Fonts and Font Files

XPP supports fonts and font files in these formats:

e Type 1 base font

e AFM file

e Type 1 CID font

e CMap file

e OpenType/PostScript base font

® Open Type/PostScript CID font

e OpenType/TrueType base font
Note: Fonts that fail with checksum errors, ttftotype42 conversion errors, or
ttftotype42: "no such table” errors are rejected as not valid for use with XPP.For

more information about TrueType font conversions, see|"TrueType Fonts”| in the
XML Professional Publisher: Managing XPP manual.

Type 1 Base Fonts

Type 1 base fonts are traditional PostScript fonts that allow access to no
more than 256 characters at a time.

1-2 Installing Fonts Fonts

Fonts

Understanding the Installation Process

Type 1 base fonts are available in one of these two file types that contain the
character definitions:

e PFA—Printer Font ASCII (.pfa)
e PFB—Printer Font Binary (.pfb)

XPP uses the PFA format. Since most Type 1 base fonts are sold in PFB
format, the Font Copy utility converts PFB files to PFA as part of the copy
activity.

Type 1 base font packages also include AFM (Adobe Font Metrics) files,
which contain width, kerning and other information that the Build FAST
utility uses to create the XPP specs.

XPP requires both the font file (.pfa or .pfb) and the Metrics file (.afm) for
Type 1 base fonts.

XPP accesses characters in a Type 1 base font by use of an encoding table.
Each font has a default encoding. To access additional characters, you must
use an encoding file. Refer to “Chapter 14 Encoding Tables” for additional
information.

Type 1 CID Fonts

A Type 1 CID font is a Type 1 font in which the characters are accessed in
the PostScript code with CIDs (character identifiers), rather than by
character names as in a Type 1 base font.

Type 1 CID fonts are available in a binary file format that contains the
character definitions. This is not the same format as a PFB file.

Type 1 CID font packages also include AFM files. The Build FAST utility
uses these files to create the XPP specs.

XPP requires both the font file (which typically has no file extension, but
may have a .cid or other file extension) and the Metrics file (.afm) for Type 1
CID fonts.

XPP accesses characters in a Type 1 CID font by using an (external) CMap
file. Since most Type 1 CID fonts are based on standard character
collections, common CMap files may be used with many different Type 1
CID fonts. Thus, CMap files for Type 1 CID fonts are stored in a common
CMap directory, as explained on page 1-6. These CMap files typically have
no file extension, but may have a .cmap or other file extension.

Installing Fonts ~ 1-3

Understanding the Installation Process

OpenType Base and CID Fonts

An OpenType font is a font recorded in a platform-independent format. It
can contain definitions for many thousands of characters within a single
font. It is much different internally from a Type 1 base or Type 1 CID font.
An OpenType font can contain either PostScript (.otf) or TrueType (.ttf)
character definitions, both of which are supported by XPP. (The PostScript
form is called Compact Font Format, or CFFE.)

An OpenType/PostScript CID font is a font in which the characters are
accessed in the PostScript code with CIDs (character identifiers), rather than
by character names as in an OpenType/PostScript base font.

To install an OpenType base or CID font, you need only the font file (.otf or
ttf). Font Copy extracts mapping data and metrics data from the font to
create a Unicode CMap file and a Metrics file for the font and stores the
CMap file (with the extension .cmap) and the AFM file (with the extension
.afm) in the same directory as the font itself. Build FAST temporarily extracts
metrics information while creating XPP specs if an OpenType/PostScript
font file (.otf) is selected instead of a Metrics file (.afm).

For an OpenType/PostScript CID font (when using psfmtdrv, but not when
using divpdf), Build FAST can also specify to use an external CMap file that
has been imported into the XYV_EXECS/psres/fonts/CMap directory
rather than the default extracted CMap file created in the same directory as
the font itself.

XPP accesses characters in an OpenType font by using a CMap file. This
provides direct access to most or all of the characters in the font. For
information about OpenType Fonts with unmapped glyphs, see Appendix
B: Status, Tips, and Troubleshooting |

Putting Fonts in the Correct Directories

XPP installs the fonts it copies into a XYV_EXECS/psres/fonts/
fontname.font directory to ensure there is no conflict between fonts that
XPP uses and fonts you may have already installed on your system for use
with other applications. XPP provides the Font Copy utility to place the font
files you want to install in the appropriate directories.

1-4 Installing Fonts Fonts

Fonts

Understanding the Installation Process

Font Directories

The following table identifies the location and describes what font
information is in that location.

Table 1-1 XPP Font Locations

Location Description

XYV_EXECS/psres This directory contains the PSres.upr file, which
is an index to the PostScript fonts that XPP
installs.

Font Copy asks to update the PSres.upr file each
time you install a new font. XPP uses the
information in the PSres.upr file to locate the
fonts.

XYV_EXECS/psres/encodings ~ The XYV_EXECS/procs/sc/pdfsetup.pl Perl
script uses the XYV_EXECS/bin/pdfencode.pl
Perl script to convert Type 1 base font
PostScript-type encoding files used by psfmtdrv in
the XYV_EXECS/sys/od/ps_dlf/encodings
subdirectory into this subdirectory for Type 1
base font PDF-type encoding files needed by

didvpdf.
XYV_EXECS/psres/fonts This is the directory path for user-installed fonts
and AFM and CMap files.
XYV_EXECS/psres/fonts/ Font Copy creates this subdirectory and names it
fontname.font/ for a specific font according to the actual name

of the font. For example, for a font called
NotoSerif-Regular, the directory name is:
NotoSerif-Regular.font.

Installing Fonts ~ 1-5

Understanding the Installation Process

Table 1-1 XPP Font Locations (Continued)

Location

Description

XYV_EXECS/psres/fonts/
fontname.font/ fontname.xxx

This is the name of the actual font file.

For Type 1 base font files, .xxx is .pfa and is the
PostScript code for the font.

Type 1 CID fonts are not .pfa files and do not
typically have a file extension, but may have a
.cid or other file extension.

For OpenType font files, .xxx is .off or .ttf.

OpenType fonts also have a CMap file
generated by the Font Copy utility. For these,
.xxx is .cmap. Some OpenType/TrueType fonts
(.ttf) can also have a Type 42 file generated by
the Font Copy utility, where .xxx is .t42.

For AFM files, .xxx is .afm.

This file may be optional. It is only necessary
when building font width specs; if font width
specs are already available and you are not
using the Direct to PDF (divpdf) program, you
do not need this file.

Otherwise, this file is required for Type 1 base
and CID fonts. For OpenType fonts, Build
FAST extracts this information from the .otf or
ttf file.

With all fonts, the name of the generated font
directory fontname.font and copied or
generated font file fontname.xxx is the same as
the internal font name, even if the name of the
original font file is different.

XYV_EXECS/psres/fonts/
CMap

Font Copy creates this subdirectory for
(external) CMap files that are used with Type 1
CID fonts, and also those that can be used with
OpenType/PostScript CID fonts (but only when
using psfmtdrv and not when using divpdf).

XYV_EXECS/psres/fonts/
Noto_Fonts_License.txt

Legally required license/usage file included in
distribution of Noto fonts.

Use Build FAST, explained on page 1-10, to create or update the font specs

for newly acquired fonts.

1-6 Installing Fonts

Fonts

Using Font Copy

Using Font Copy

Font Copy, an XPP utility, copies source fonts into the XPP directory structure
in the following steps:

1. Allows the user to select the font files to copy.
2. Performs the copy and generates necessary font files.

3. Creates or updates the PSres.upr file, the file that lists all the font files
and their locations.

Using Font Copy makes the font available for use with XPP.

Running Font Copy

To run Font Copy from the PathFinder toolbar:

1. Select Tools > Font Copy
PathFinder displays the Select Font Files list box.

For Type 1 CID Fonts and external CMap files, set Font Files to All Files
since these files may not have a file extension.

2. Select the directory containing the files you want to copy and click the
Open button.
XPP displays the following font files for a PostScript Type 1 base font.

- s -
$¢ Select Font Files =ET=

Home | usr| app| xyvision]EI psresl fonts I AGaramond-Bold.font
[Desktop 5
Name b lModmedJ
- Documents -
“8, AGaramond-Bold.afm 03/11/96
= Filesystem
2 AGaramond-Bold pfa 03/11/96
4 Add =» Remove Font Files (* pfa;* pfb;* afm;* otf;* ttf) [+]
X Cancel] [0pen |

In this example, AGaramond-Bold is the font specified.

There may be two or more files for each PostScript Type 1 base font,
but XPP uses the following:

® font.afm

e font.pfa or font.pfb

Fonts Installing Fonts ~ 1-7

Using Font Copy

1-8

Installing Fonts

. — -
34 Select Font Files T=ET=L]

-
Home ~ usrl app | xyvision]EI psres | fonts “AGaramnnd-Bnld.funt
[HDesktop 5
= Name A ! Mudaﬁedj
|4 Documents -
@ Fiosystam “% NimbusSans-Reg.afm 03/11/96
& NimbusSansReg 03/11/96
4k Add == Bemove Font Files (* pfa;* pfb,* afm;* off;* ttf) [+]
X Cancel] 5 Open

In this example, NimbusSans is a Type 1 CID font. Type 1 CID fonts
also have two or three files:

o filename.afm

e filename

o cmapfilename (optional external CMap)

Note that there is no .pfb file for a Type 1 CID font and Font Files is set
to “All Files’. For an OpenType font, there is only one file: fontname.otf
or fontname.ttf.

Select the font files for the fonts you want to copy and click the Open
button to start the copy.

XPP closes the window. Font Copy displays a message box, stating
“Please wait...”

Font Copy copies or generates the font files into the XYV_EXECS/
psres directory tree. If the font is OpenType, it also generates a CMap
tile and an AFM file in the same directory as the font file.

When the copy is complete, Font Copy asks if you want to update the
font search path.

Click Yes.

When the update is complete, Font Copy displays a pop-up window
that says, “Font Copy completed.”

Click the OK button in the pop-up window.
Font Copy closes the window.

Fonts

Fonts

Using Font Copy

You may need to add the font to the appropriate download table. If you are
using enable font download (-efd), add the font to the appropriate font
download table (XYV_EXECS/xz/sys/od/ps_dlf/tables). Refer to
'Download Tables for PostScript Fonts”| on page 2-10 for complete
information.

Note: When a TrueType font has no glyph names, Font Copy will generate a Type
42 (fontname.t42) file and save that file along with the fontname.ttf file.

Installing Fonts ~ 1-9

Using Build FAST

Using Build FAST

Use Build FAST to automatically create all necessary XPP supporting font
files for fonts.

Build FAST uses the .afm or .otf files located in the appropriate
XYV_EXECS/psres/fonts subdirectory to do the following;:

® Create the Phototypesetter Spec (PTS), FAST Generation Spec (FGS),
and Pseudofont Spec (PSF).

® Generate a machine-readable Font Access Table (FAST) file.

e Update the Font Variant (FV) Spec you specify.

e Update the Typesetter Font Map (TSF) Spec.

e Optionally create the Kerning Pairs (KP) Spec and generate a
corresponding machine-readable Kerning Pairs (KP) data file.

Font Specs
and Files:

PTS
FGS
Build FAST PSF

_am File | =3 KP

FV
FAST
TSF

Note: XPP does not support Type 3 fonts.

Running Build FAST

To run Build FAST from the PathFinder toolbar:

1. Select Tools > Build FAST

XPP displays the Select PostScript Font Metrics Files list box,
displaying the font folders in your XYV_EXECS/psres/fonts directory.

1-10 Installing Fonts Fonts

Using Build FAST

’ Select PostScript Font Metrics Files X
T e« APPS(E} » XPP » x@ » psres » fonts » v Search fonts el
Organize « Mew folder - [@
[Desktop f MName Date modified Type Size i
i) Pocuiments ACaslon-ltalic.font File folder
& Downloads AtCaslon-Regular.font File folder
J’! Music ACaslon-5Semibold.font File folder
[/ Pictures AcCaslon-Semiboldltalic.font File folder
m Videos AGaramond-Bold.font File folder
G Local Disk () AGaramond-Boldltalic.font File folder
- AGaramond-ltalic.font 71172022 7:07 AM File folder v
m APPSIE) " 5
File name: || w | PostScript Font Metrics (*.afm;” ~ |

2. Select the folder of the font for which you are building the FAST and
click the Open button.
XPP displays the files associated with the font you selected.

3. Select the .afm or .otf file and click the Open button.
XPP displays the Build FAST dialog box.

Fonts Installing Fonts ~ 1-11

Using Build FAST

Build FAST _ (O] x|

Font Specification Form for

AGaramond-Bold
Font Width Library: [post |
Encoding/Chlap Table: |e><tended j
r
FostScript Character-MName Table: |custom j
C55 fontfamily. |Adobe Garamond
CSS font-weight: [bold -
CSS font-style: [normal |

Font Yariant Spec; |><ybui|t
Primary FAST Number: W
Secondary FAST Number: 10006
Font Family Mumber: ’0_
Font Variant Number. ’T

Style Slant Weight

& serif- 5] & roman - [1] axtralight - [g] inferiar - [d]

 sans - [n] talic - [i] light - [I] superior - [u]
g

bold - [b]

I
I

* medium - [m] ¢ condensed - [c]

o = ather - [o]

© axtrabold - [%] all - [a]

-~

heawy - [h]

‘ Apply | Cancel |

The dialog box displays a title box, showing the font for which you are
specifying a FAST. In the illustration, the title shows the FAST will be
built for the Postscript Type 1 base font named AGaramond-Bold.

. Set the Font Width Library field to the font library of your choice.

The default is noto the first time you use Build FAST. Subsequently,
Build FAST defaults to the last Font Width Library that was specified
the last time Build FAST was run. The Font Width Library name is a
maximum of eight alphanumeric characters of your choice (not
including the preceding L).

If you enter a library that does not exist, the program creates it.

. Set the Encoding/CMap Table name field.

An encoding table maps PostScript character names to font glyphs in a

1-12 Installing Fonts Fonts

Using Build FAST

Type 1 base (non-CID) font. A CMap maps ID numbers or PostScript
character names to glyphs in a Type 1 CID or OpenType font.

® PostScript Type 1 Base Font

If you are using a PostScript Type 1 base font, you can use the

drop-down menu to view the list of available encoding tables

located in XYV_EXECS/sys/od/ps_dlf encodings.

® The default entry the first time you use Build FAST is extended.
Subsequently, Build FAST defaults to the last encoding table that
was specified the last time for a Type 1 base font.

® For Pi and non-standard text fonts, enter none for the encoding
table name. Refer to["Non-Standard Font Encodngs” on page 14-3
for more information.

® To create custom tables, refer to “Encoding Tables”.

e The Encoding table is a CMap field is disabled when using a
PostScript Type 1 base font. Instead, the dialog enables the
PostScript Character-Name Table field.

Fonts Installing Fonts ~ 1-13

Using Build FAST

e Type 1 CID Font

e o e 1 e
Bula rAo - (- ~

Font Specification Form for
EUAIbertina-Regular

Font Width Library: |noto -

Encoding/CMap Table: | |
¥ CMap values are Unicode

PostScript Character-Name Table: |none |

CSS font-family: |EUAtbert| na

CSS font-weight: [normal |
CSS font-style: |normal |

Font Variant Spec: Ixbe
Primary FAST Number: [5001
Secondary FAST Number: 10006
Font Family Number: ID—
Font Variant Number: IO_

Style Slant Weight
& serif - [s] & roman - [r] i~ extralight - [e] " inferior - [d]
" sans - [n] = italic - [i] = light - [I] ™ superior - [u]
& medium - [m] ¢ condensed - [c]
¢ bold - [b] ¢ other - [o]
i~ extrabold - [x] " all - [a]
¢ heavy - [h]

Apply Cancel |

In the illustration, the title shows the FAST will be built for the
Type 1 CID font named EUAlbertina-Regular.

If you are using a Type 1 CID font, the Encoding/CMap Table field
drop-down menu contains the list of CMaps located in
XYV_EXECS/psres/fonts/CMap.

a. Select the appropriate CMap file name.

Note: If you are installing a CID font, XPP enables a CMap values
are Unicode field instead of the Encoding table is a CMap field.

b. Click the button in front of the CMap values are Unicode field if you
are installing CID fonts and the CMap encoding is a subset of
the Unicode character set.

The button changes color to indicate that the field is active.
Build FAST uses the Unicode number as the XCS number and
inserts it in the computer generated PTS table.

Note that if you do not check the box in front of CMap values are

1-14 Installing Fonts Fonts

Fonts

Using Build FAST

Unicode field, indicating that the CMap is not a Unicode CMap,
and the CMap value is not a valid XCS number, Build FAST
generates the message, “Assigning character # to 999”, rather
than leaving an invalid XCS number assigned to that font
character that would cause the Build FAST process to abort
when creating the PTS Spec and FAST.

¢ OpenType font

Build FAST H[=]

Font Specification Form for

Arial
FontWicth Library. [post -]
Encoding/CMap Table: |Arial -
F Encoding table is a Chap
PostScript Character-Name Table: |none |
C5S font-family; IAriaI
CSS font-weight [normal |
CSS fontstyle: |normal |

Font Yariant Spec: |><ybui|t

Primary FAST Number: |5004
Secondary FAST Mumber: 10006

Font Family Mumber: IO
Font Yariant Number: I'I

Apply | Cancel |

In the illustration, the title shows the FAST will be built for the
non-CID OpenType font named Arial.

An OpenType PostScript font may be either
® a base font

e a CID font

OpenType Base Font

If it is an OpenType base font, its characters are always accessed
with the Unicode CMap that is located in the same directory as the
font file, and which has the same name as the font. This CMap is
generated when you import the font with the Font Copy utility.

With an OpenType base font, the CMap name is set to this value
(and the drop-down menu is disabled since it is the only valid
value). Also, the Encoding table is a CMap field is disabled (set to
selected) when using an Open Type base font.

OpenType CID Font

Installing Fonts ~ 1-15

Using Build FAST

If this is an OpenType CID font, its characters may be accessed
either with the font-specific Unicode CMap generated by Font
Copy, which is the first entry in the drop-down menu, or by an
appropriate CMap located in the XYV_EXECS/psres/fonts/CMap
directory (but only when using psfmtdrv and not when using divpdf).

With an OpenType CID font, do the following;:
® Select the desired CMap name.

If you are selecting the font-specific Unicode CMap or any other
Unicode-based CMap, be sure the radio button in front of the
CMap values are Unicode is selected.

If you are selecting a non-Unicode CMap, be sure the button is
clear.

6. If you are importing a Type 1 (non-Unicode) base font, the dialog
activates the PostScript Character-Name Table field. Choose one of the
following options:

¢ custom table: If you are adding a new Type 1 base font for existing
jobs that were based on XCS values and were converted to Unicode
for XPP 8.x based on the XCS Spec, this choice matches how
Unicode values were assigned for the fonts in the legacy data
brought forward and this new Type 1 base font being added to
legacy data.

® unicode table: If you are adding Type 1 base fonts, but are
importing Unicde characters as-is, this option overrides the
Unicode values in the original XCS Spec that were preserved to
maintain legacy data.

7. For PostScript Type 1 base and CID fonts, use the Style, Slant, and Weight
tields to indicate what type of glyphs the font contains. Set these fields
to the values that apply to the glyphs in the font.

It may be that a Pi font contains more than one variation of glyphs,
that is, bold, italic, and medium variations, and you want to extract
only the glyphs of a particular variant for a FAST. In that case, set
these fields to the values that best apply to the majority of glyphs in
the font relative to the main variant or secondary FAST to which this
font would be added. Otherwise, if you want to extract all variations
of glyphs in a Pi font for a FAST, then select the "a” value.

For OpenType fonts, Build FAST automatically applies “a” to specify
all style codes.

You can always change the Style Code values later in the generated font
specs and re-genfast a FAST.

8. For the remaining fields, use the following table as a guide:

1-16 Installing Fonts Fonts

Using Build FAST

Field:

Description

CSS font-family
CSS font-weight
CSS font-style

These fields are used if your DIV is in css-xml mode;
they correspond to the font-family, font-style, and
font-weight properties in your .css style sheet definitions.
Build FAST does its best to set these field values based
on values in the AFM file. Change any values that are
not correct for the font. Refer to the Styling Content with
CSS publication for more information on using fonts
with CSS.

Font Variant Spec

The default is xybuilt.

The name is a maximum of eight alphanumeric
characters. You can change this field to specify any FV
Spec. If you specify an FV Spec that does not exist, Build
FAST creates it for you.

Note: The FV Spec that you name/create lives in the font
library, so you still need to update the FV in a style
library.

Primary FAST
Number

This is the font number that identifies the font.

Numbering starts at 501 by default the first time you use
Build FAST. You may use your own numbering
convention. Valid values are 0-32767. Whether you use
the default convention or your own,

Build FAST uses the same value that was used last time
unless the Font Variant Number that was used last time
was 255, in which case Build FAST will increment the
Font Family Number by one.

Secondary FAST
Number

This is the number of the Secondary FAST. Valid values
are 0-32767.

Font Family Number

This is the number of the font family. Valid entries are
0-2047. Build FAST will use the same value that was used
last time, unless the Font Variant Number that as used last
time was 255, in which case Build FAST will increment
the Font Family Number by one.

Font Variant Number

This is the number of the font variant. Valid entries are
0-255. Build FAST will increment the number by one on
each subsequent use. If the value used last time was 255,
Build FAST will increment the last Font Family Number by
one and set the Font Variant Number to zero.

If you enter an invalid character or value in any field, including too many
characters in a library or spec name, a beep sounds, and the field rejects the
last character you entered.

9. When you have completed the form, click the Apply button.

If you leave any field blank, a beep sounds and a Warning box
displays the following message, “Please enter all values.”

Fonts

Installing Fonts ~ 1-17

Using Build FAST

10.

11.

12.

Click the OK button in the Warning box.
XPP places the cursor in the first blank field that requires a value.

If Build FAST finds the specified font name in the TSF file with a
different FAST number and/or another font is already assigned to the
specified FAST number, the utility displays a pop-up message
window. For example, if you specify font NotoSansMono-Regular and
FAST 30, the utility displays the following warning messages:

WARNING: NotoSansMono-Regular already exists as font: 0
WARNING: NotoSerif-Regular already exists as font: 30
Do you want to continue?

Click no to abort the process.

Click yes to continue.

Build FAST closes the dialog box and displays the Font Build window,
displaying the program’s progress about the specs Build FAST created.

Click the OK button.
Build FAST displays a message box that states “Completed.”

Click the OK button.
Build FAST closes the message window.

Warning/Error Messages from Build FAST

When you click the Apply, you may get an error message. The following
table displays the possible error messages you might see:

Error Message Description

WARNING: Unencoded character See "Modifying the Encoding Table” for
charactername, using 0 instructions.

WARNING: Unmapped character This means that the font is a CID font
CHAR CODE, using XCS number and the CMap values are Unicode field was

unchecked and a CHAR CODE in the
font either did not match an XCS
number in the XCS Spec or the matched
XCS character did not have a Unicode
value assigned to it.

1-18 Installing Fonts Fonts

Using Build FAST

Error Message

Description

INFO: There are count undefined
characters in PTS "name’: these appear as
Unicode # "x0’

This means that when GenFAST was
run by Build FAST on the PTS Spec,
there were count rules in the spec that
had a zero UNICODE NUMBER value.
When Build FAST creates a PTS Spec for
a font, it will add rules to he PTS Spec
for unencoded glyphs, with zero for
both the CHAR CODE and UNICODE
NUMBER fields but with the actual
glyph width and description.

WARNING: line 10 field "fontname’
(fontname) too long - limit is 18

This means that the Font Family name
exceeds the 18-character limit for the
Font Family. The offending name is
truncated and is noticeable in the Status
Window display. To see what the utility
has done and edit it if you want, edit
the FGS Spec fields.

WARNING: line 10 field ‘fontvar’
(variantname) too long - limit is 12

This means that the Font Variant name
exceeds the 12-character limit for the
Font Variant. The offending name is
truncated and is noticeable in the Status
Window display. To see what the utility
has done and edit it if you want, edit
the FGS Spec fields.

WARNING: No (character name) PSN

Enter the character name(s) in
psn_custom or psn_unicode in Lsyslib,
with an appropriate Unicode number
and rerun Build FAST.

WARNING: Font contains (number)
kerning pairs; KP table can only hold
first 6,553,500; rest will be ignored

The KP table cannot hold more than
6,553,500 kerning pairs.

WARNING: CMap code (number)
collides with xyps, 0xf800-{8ff;
characters in this range will be ignored.

XPP reserves the code range f800-{8ff for
its own use, to define xyps, as allowed
by the Unicode specification. Fonts
must not define characters in this range.

After Running Build FAST

When Build FAST has completed its process, there are some different
follow-up steps you may need to perform, depending on whether you ran

Build FAST for text fonts or Pi fonts.

Installing Fonts ~ 1-19

Using Build FAST

Follow-up for Text Fonts

You may need to:

e Update the Font Variant Spec in the style library that is specified in the
Job Ticket.

When you run Build FAST, the copy of the Font Variant Spec that
Build FAST updates is located in your font library. The system,
however, uses the Font Variant Spec in the style library that is
specified in the Job Ticket. Therefore, you may want to save the rule
from the FV Spec in the font library and restore it to the FV Spec in the
style library.

e Add the font to the appropriate download table.

If you are using enable font download (-efd), add the font to the
appropriate font download table (in the XYV_EXECS/sys/od/ps_dlf/
tables directory).

Follow-up for Pi Fonts

Setting up a Pi font requires a good understanding of the XPP font
environment. If you do not have this foundation, RWS strongly
recommends that you read the PostScript Name Spec, FAST Generation
Spec, Creating and Viewing FAST Specs, and Encoding Tables chapters in
this manual.

You may need to complete the following steps to properly install a Pi font:

1. Edit the PTS Spec that Build FAST created if you want to use style
codes for proper character access.

2. Add arule for this Pi font PTS to the FGS Spec(s) for your Pi
(secondary) FASTs so you can access it without changing font families.

The FGS Specs typically used for generating Pi (secondary) FASTs are
fgs_10001 through 10009. Each of these specs generally relates to
specific style codes, for example 10002 for sans bold.

3. Run GenFAST against the number of the FGS Spec you have edited.
This utility includes the new Pi characters in the FAST.

4. Run a font width test against the Pi FAST.

5. Test the font by using it in a division.
To determine which key sequence or character entity accesses your
new Pi characters, check the XCS Spec in the syslib library, which lists
the ASCII sequence for each character.

6. If you are using enable font download (-efd), add the font to the
appropriate font download table (XYV_EXECS/sys/od/ps_dlf/tables
dirctory).

1-20 Installing Fonts Fonts

Fonts

Using Build FAST

Resolving Unidentified PSN Names During Build FAST
Processing

The warning “Unidentified PSN” occurs primarily in Pi fonts if the system
does not recognize the PostScript “name(s)” used to identify characters in
the fontname.afm file. Often the "name” is a number.

The syslib library contains the following PSN Specs:

® psn_custom
® psn_unicode
® psn_ps2xcs

Build FAST checks the character names in the .afm file against two of these
specs for matching names (always psn_ps2xcs and then either psn_custom
or psn_unicode). If some or all do not match, Build FAST reports a warning
that the character name(s) is not recognized. This is important because this
is how XPP assigns XCS numbers (a requirement) to character names. See
step 6 on page 1-16 for an explanation of the difference between the
psn_custom and the psn_unicode Specs.

The warning does not necessarily prevent you from loading your Pi font,
but it does prevent you from functionally using the characters in XPP. There
are two choices available for you to continue.

Choice 1

Choice 1 involves editing psn_custom and/or psn_unicode and re-running
Build FAST.

Note: Do not edit psn_ps2xcs. It contains 3720 character names that have become
standard usage by many font vendors. If you edit this spec, you run the risk of
inadvertently deleting a standard character name and causing extra work in future
font installations.

RWS recommends adding these characters to psn_custom and/or
psn_unicode as the preferred way to resolve the warnings for the following
reasons:

1. If the Pi font has a character(s) that could occur in other fonts, you
want to add the character to the PSN Spec. Having the character in
_psn_custom.sde and /or _psn_unicode.sde allows XPP to read the
character name the next time you build a font containing this
character.

2. If you must use custom XCS numbers, this allows you to keep track of
used numbers.

Installing Fonts ~ 1-21

Using Build FAST

1-22

Modifying the PSN Spec

If your print log indicates that the PostScript Name Spec does not recognize
the names of your Pi font characters, do the following;:

1. Identify the custom slots in the Xyvision Character Set (XCS) and
determine the number(s) to which you can assign the character(s) in
your Pi font.

2. Access the PostScript Name Spec from the PathFinder Tree View,
using the following sequence:
STYLE LIBRARIES > Lsyslib > PostScript Names
PathFinder displays the available file names in the List View.

3. Select custom or unicode from the List View.

XPP displays the _psn_custom.sde or _psn_unicode.sde Spec, containing
one or more rules with the following fields:

Field Description
PS Name Specifies the name of a PostScript character.
XCS number Specifies a Xyvision Character Set number to associate

with the PostScript character.

Description An optional identifying description for the character.

4. Add a rule for each character in your Pi font by specifying the
following;:

® A name for the character.
® The XCS number for the position you want assigned to it.
® An optional description for the character.

5. Run Build FAST again (refer to page 1-10).
If, after completing these steps and running Build FAST a second time,
you still have warning/error messages in the Build FAST log, consult
the Troubleshooting section on page 1-23.

Choice 2

Choice 2 involves modifying the PTS Spec
1. Modify the PTS Spec and assign XCS numbers to those characters.
2. Run GenFAST against the corresponding FGS Spec.

Note: With either Choice 1 or 2, be aware that while the system doesn’t recognize
the character name in the .afm file, the character itself may exist in the XCS Spec

under another name or description. Carefully check the XCS Spec. If the character
exists, you can map it to that XCS number in psn_custom and/or psn_unicode, or
the PTS Spec. If not, select an unassigned XCS number in the customer definable
range.

Installing Fonts Fonts

Troubleshooting Fonts

Troubleshooting Fonts

Fonts

Occasionally you may experience some difficulty installing fonts. This
section addresses some of the common situations that RWS has
encountered.

The following procedures require a solid understanding of the XPP font
environment and some familiarity with operating system utilities and
commands. If you do not have this foundation, RWS strongly advises that
you read the remaining chapters of this manual before attempting any of
these procedures.

Troubleshooting Tips

Use the following sequence of steps to isolate font problems:

1. Verify that the font file is the correct format - PostScript Type 1 base,
Type 1 CID, OpenType/PostScript, OpenType/TrueType, OpenType/
PostScript CID, and external CMap (refer to page 1-2).

2. Verity that it is in the correct location with a correct index entry in the
PSres.upr file (refer to page 1-5).

3. Run a font width test against the FAST in question (refer to page
11-15).

4. Determine if the problem is output only. If so, check the font
download table.

5. Determine if the problem is with the XyView display. If so, check the
font specs in XPP and the associated font library.

Verifying that You Have a Valid Font File

If you have trouble with a particular font, first verify that it is a valid font
tile. You can do this by running the XPP xyprfont.pl utility on the font file
from a command window. Xyprfont.pl is located in XYV_EXECS/bin. You
can run xyprfont.pl on PostScript Type 1 base, Type 1 CID, OpenType/
PostScript, OpenType/TrueType, and Open Type/Postscript CID fonts.

Xyprfont.pl is a Perl program that produces a PostScript file that shows all
the characters in a font. The output file bears the PostScript name of the font
and the extension ”.ps”. If certain options are used, they are reflected in the
file name, too.

Each page prints a range of 256 character codes; code points on the page
that are not mapped in the font appear as gray cells.

For OpenType fonts, characters in the font that are not mapped in the font’s

Installing Fonts ~ 1-23

Troubleshooting Fonts

Unicode cmap table appear on pages following the mapped characters.

PostScript Type 1 Base Font

To run xyprfont.pl on a PostScript Type 1 base font, enter the following
syntax on the command line:

xyprfont.pl FontFile [-fn FontName] [-enc EncodingFile]
Where:
FontFile is the name of the PostScript font file.

—fn FontName (optional) is the PostScript font name. Use this option if the
program cannot find the PostScript name within the file.

—enc EncodingFile (optional) is the name of a PostScript encoding file; this

tile must be in the current directory or in:
XYV_EXECS/sys/od/ps_dlf/encodings

Using this option creates a PostScript file with a name using the following

format: FontName[_EncodingFile].ps

For example, the following command:

xyprfont.pl Times.pfa

executes the xyprfont utility on the Times.pfa font file in the current
directory, using the default encoding, and produces the file Times.ps.

In rare cases, where the program cannot find the PostScript name within the
file, you may need to use the following syntax:

xyprfont.pl xxx.pfa -fn Times

where xxx.pfa is the file name but “Times” is the actual PostScript font
name.

Type 1 CID Font

To run xyprfont.pl on a Type 1 CID font, use the following syntax on the
command line:

xyprfont.pl FontFile [-cmap [CMapName]] [-from Start]
[-to End]

Where:
FontFile is the name of the font file.

—cmap (optional) Character Map maps from the character codes in the
document to the glyphs in the font.

CMapName (optional) is the name of the CMap file. This entry must be in
the current directory or in XYV_EXECS/psres/fonts/CMap.

If you do not provide a CMap, the program uses Identity-H
CMap (built into the program), which generates all possible

1-24 Installing Fonts Fonts

Fonts

Troubleshooting Fonts

65K code positions (up to 256 pages) unless limited by —from
and —to options.

—from Start says to start processing with the page that contains this
character (e.g.: in hex you might enter 3a00). If you don’t
provide the character, processing starts with the first character
in the CMap file.

—to End says to end the processing with the page that contains this
character (e.g.: in hex, you might enter 3bff). If you don’t provide
this character, processing continues through the last character in
the CMap file.

For example, the following command:
xyprfont.pl Orient-Bold —-cmap EUC-H -from 2121 -to 277e

produces Orient-Bold_EUC-H_2100-27ff.ps in the current directory.

OpenType Font

You can run xyprfont.pl on an OpenType/TrueType, OpenType/PostScript, or
OpenType/PostScript CID font. You can access characters with either a
CMap or an encoding file (for non-CID fonts).

CMap Access

To run xyprfont.pl on an OpenType font using CMap access, use the following
syntax on the command line:

xyprfont.pl FontFile [-cmap [CMapName]] [-from
Start] [-to End] [-no_unmap] [-tone]

Where the following is true:
FontFile is the name of the font file.

—cmap (optional) Character Map maps from the character codes in the
document to the glyphs in the font.

CMapName (optional) is the name of the CMap file. If you do not enter a
CMapName, the program extracts the mapping
from the Windows Unicode cmap table in the font.

—from Start says to start character output with the page that contains the
character Start (in hex; e.g., “-from a7e’ starts with page
0a00-0aff); if there is no Start page, start with first page in the
CMap.

—to End says to end character output with the page that contains the

character End (in hex; e.g., ‘—to 3b60” ends with page 3b00-3bff); if
there is no end page, end with the last page in the CMap.

—no_unmap (optional) Used to suppress unmapped glyphs.

—tone (optional) converts OpenType/PostScript fonts to Type 1 so that they
can be printed on older PostScript devices.

Installing Fonts ~ 1-25

Troubleshooting Fonts

Encoding File Access

To run xyprfont.pl on an OpenType font, using encoding file access (non-CID
font only), use the following syntax on the command line:

xyprfont.pl FontFile -enc [EncodingFile]

Where the following is true:
FontFile is the name of the font file.

EncodingFile (optional) is the name of a PostScript encoding file.

This file must be in the current directory or in
XYV_EXECS/sys/od/ps_dlf/encodings

Use the encoding (8-bit) access method to address character positions 0-255.
If an EncodingFile is provided, use that encoding; otherwise, use the font’s
default encoding.

If the —enc option is not present, xyprfont.p/ uses the CMap access method.
Unmapped Glyphs

OpenType fonts often contain additional glyphs that are not included in the
default Unicode CMap. Unmapped glyphs are printed following the
mapped characters only when the -from, -to, -cmap and -enc options are not
used. To suppress unmapped glyphs even when those options are not used,
supply the -no_unmap option.

For information about mapping unmapped glyphs, see
[Unmapped Open Type PostScript Font Glyphs” on page B-8.

Viewing Output File

If you generate an output file, you can look at the contents with a PostScript
viewer or print it. If the font is a valid font, the output contains a grid of the
characters. If the contents of the output file are in NotoSansMono typeface,
then the font is not valid (unless you are printing the NotoSansMono font).

If the file does not contain a valid font, the program displays an error
message on the screen during processing. If this occurs, go back to your
font vendor to exchange it or convert it using a font conversion program.

Notes:

® You can also use XYV_EXECS/gs/gsx FontFile.ps fto view the
xyprfont.pl output.

® [f you are running xyprfont.pl in the XYV_EXECS/psres/fonts directory tree,
be sure to remove the .ps file when you finish testing. Otherwise, the next
time you run makepsres, you will receive a warning about an invalid font file.

1-26 Installing Fonts Fonts

Fonts

Troubleshooting Fonts

Modifying the Encoding Table

At times, a font being installed contains characters that are not included in
the encoding table. You may need to modify the encoding table. Refer to the
Encoding Tables chapter on page 14-1 for complete information.

Verifying the Directory Structure

A font can appear in XPP in NotoSansMono or another font or not match
the actual font you thought you set up. This problem can be caused by an
invalid font file or a configuration problem.

Consult the following list of scenarios to see whether any match the
problem you have encountered.

Note: If you run makepsres to solve your problem, make sure that you run the
XPP-supplied version in XYV_EXECS/bin, and not any version that may be a
part of your operating system.

e If you used Font Copy to copy fonts into place and did not respond
with Yes at the prompt to update the font search path, some or all of your
fonts may not be accessible. The preferred way to recover is to go back
into Font Copy and rerun the utility, selecting yes to update the font
search path.

An alternative method at the command prompt level is to change to
the XYV_EXECS/psres directory and run XYV_EXECS/bin/
makepsres. Note that the command must be issued from within the
XYV_EXECS/psres directory.

¢ [f you manually moved fonts into the XYV_EXECS/psres/fonts
directory, you have to update the PSres.upr index file.

Follow the instructions outlined above for running makepsres.

This is not recommended with OpenType fonts because the FontCopy
utility also creates an AFM and a CMap file for the font.

e If you issue XYV_EXECS/bin/makepsres from a directory other than
XYV_EXECS/psres, you create a PSres.upr file in the directory from
where you issued the command. As a result, you may not be able to
access fonts from XPP.

To recover, remove any PSres.upr files that are in an incorrect location.
In addition, go to XYV_EXECS/psres and rename or remove any
PSres.upr files that are there. Then, rebuild psres by following the
instructions outlined above for running makepsres.

o If the variable PSRESOURCEPATH has been customized previously
(for Adobe applications) in your home directory, it may need to be
modified.

Installing Fonts ~ 1-27

Troubleshooting Fonts

1-28

e If you cannot access a font, verify that the entries in the encoding Type

and Encoding table name fields of the TSF Spec for that font are correct.
For encoding Type: standard, the correct entry is usually extended for
text fonts or none for Pi fonts.

Sometimes, the encoding field contains a typographic error and/or
extraneous information from the old encoding table file. For example,
if the correct entry is none, using nonel does not work.

® Verify that the contents of the PostScript font Name field in the TSF

Spec is an exact match with the PostScript font name found in the font
itself. Open the TSF Spec using PathFinder (STYLE LIBRARIES >
Lsyslib (or the font library that Build FAST created /updated) >
Typesetter Font Maps > system). Check the rule associated with the
font in question, verifying spelling, capitalization, and punctuation.

Installing Fonts Fonts

Part 11

Understanding XPP Fonts and Font Specs

Fonts

Chapter 2

Introduction to Fonts

This chapter contains information on the following topics:

Understanding Xyvision Standard Format

PostScript fonts

Font download tables for PostScript fonts

Overview of the specs necessary for display and output

Unicode capabilities

Introduction to Fonts 2-1

Understanding Xyvision Standard Format

Understanding Xyvision Standard Format

The following section:

® Defines Xyvision Standard Format
® Defines Xyvision Character Set

® Explains the conversion process

Xyvision Standard Format (XSF)

Xyvision Standard Format (XSF) is a system of using numbers to represent
characters. These numbers are called Xyvision Character Set (XCS)
numbers.

The Xyvision Standard Format files contain XPP specific codes and
characters, in addition to ASCII characters.

Because output devices, such as PostScript printers, can print more
characters than the standard ASCII character set, XPP uses an expanded
character set called the Xyvision Character Set (XCS) to support these
output devices.

Xyvision Character Set (XCS)

The Xyvision Character Set (XCS), consisting of more than 32,000
characters, is defined in the XCS Spec in the syslib library.

The XCS Spec defines standard alphanumeric characters, accents, foreign
characters, math and chemical symbols, custom characters, such as
company logos, and format codes, such as tags, macros, text stream
elements, entities, and Unicode® values.

For each character in the spec, XPP assigns an XCS number, a name, and a
unique ASCII escape sequence, consisting of one, two, or three characters.
When you convert a text file to or from Xyvision Standard Format, the
conversion program refers to the XCS Spec.

To examine the XCS Spec from PathFinder:

1. Navigate to STYLE LIBRARIES > Lsyslib > Xyvision Character Set.
PathFinder displays the available libraries in the List View.

2. Double-click the default Spec.
XPP opens the spec in the SDeditor.

2-2 Introduction to Fonts Fonts

Understanding Xyvision Standard Format

The following figure is an example of the copyright rule in the XCS
Spec:

Note: “default” is the only valid name for the XCS Spec. Though PathFinder

% syslib/ Master xcs default H=] 3
File Edit View Insert Select Help ‘

LL-]

File Comment |[Sept 14, 1998: Added entity support; added Euro character.
Sept 18, 2000: Add Unicode field, initial Unicode values.
Mar 13, 2001: Corrected several Unicode and entity values.
Apr 27, 2001: Rev from UOOZ to UOO3 for 32 to 128 Entity chars.

~Tahle Comment'Standard XCS character set for XPP 5.1.

L Default Output: [Ascii 4 Entity Delimiters: Begin[& End[;

Name [copyright XCs |d150 fiscii NC Entity |copy
Line Ed |~163 Unicode |[d169
| Descrip |copyright

Ins ASCII Table 1 of 1 Rule 132 of 34?3 Fld 1

may contain other specs with different names (these may be back-up copies),
XPP does not recognize them and does not open them.

The Conversion Process

When you enter characters in a division, the system uses the XCS numbers
that correspond to these characters to access information, such as:

® Character widths for composition

e Character glyphs for screen display and output

Text in an XPP division can include any of the defined characters in the XCS
Spec and is always stored in Xyvision Standard Format.

Fonts Introduction to Fonts 2-3

PostScript Fonts

PostScript Fonts

PostScript fonts are character glyphs that are loaded into various locations

on your computer system or on an output device. RWS supplies 163 Noto
OpenType fonts and two XPP pi fonts that are ready to use as soon as you
install XPP.

Standard 35 PostScript Type 1 Base Fonts

Many PostScript devices include 35 standard fonts—33 text fonts and two
Pi (non-alphanumeric character) fonts. These 35 fonts are usually built into
an output device. Each text font contains the same set of characters. XPP
does not deliver these fonts nor any font specs for these fonts.

Some readers and devices can render only characters from those fonts or
from a different set of standard fonts; all other fonts need to be rendered by
substitution of characters from these fonts, unless you embed your fonts
directly into your outputs. Readers and devices will use the embedded
fonts to render their characters correctly.

XPP identifies fonts by numbers; PostScript interpreters identify fonts by
names. The following table lists the standard 35 PostScript fonts by name.

Table 2-1 Standard 35 PostScript Fonts

PostScript Font Name

PostScript Font Name

AvantGarde-Book

Helvetica-Narrow-Bold

AvantGarde-BookOblique

Helvetica-Narrow-BoldOblique

AvantGarde-Demi

NewCenturySchoolbook-Roman

AvantGarde-DemiOblique

NewCenturySchoolbook-Italic

Bookman-Light

NewCenturySchoolbook-Bold

Bookman-Lightltalic

NewCenturySchoolbook- Boldltalic

Bookman-Demi

Palatino-Roman

Bookman-Demiltalic

Palatino-Italic

Courier

Palatino-Bold

Courier-Oblique

Palatino-BoldItalic

Courier-Bold

Symbol (a Pi)

Courier-BoldOblique

Times-Roman

Introduction to Fonts

Fonts

Fonts

PostScript Fonts

Table 2-1 Standard 35 PostScript Fonts (Continued)

PostScript Font Name

PostScript Font Name

Helvetica

Times-Italic

Helvetica-Oblique

Times-Bold

Helvetica-Bold

Times-BoldItalic

Helvetica-BoldOblique

ZapfChancery-Mediumltalic

Helvetica-Narrow

ZapfDingbats (a Pi)

Helvetica-Narrow-Oblique

Introduction to Fonts 2-5

PostScript Fonts

2-6

XPP-delivered Noto and Pi OpenType Fonts
The following 163 Noto OpenType fonts and two XPP Pi fonts are delivered

by XPP:

NotoSansArabic-Black
NotoSansArabic-Bold
NotoSansArabic-ExtraBold
NotoSansArabic-ExtraLight
NotoSansArabic-Light
NotoSansArabic-Medium
NotoSansArabic-Regular
NotoSansArabic-SemiBold
NotoSansArabic-Thin
NotoSans-Black
NotoSans-Blackltalic
NotoSans-Bold
NotoSans-Boldltalic
NotoSansCJKhk-Black
NotoSansCJKhk-Bold
NotoSansCJKhk-DemiLight
NotoSansCJKhk-Light
NotoSansCJKhk-Medium
NotoSansCJKhk-Regular
NotoSansCJKhk-Thin
NotoSansCJKjp-Black
NotoSansCJKjp-Bold
NotoSansCJKjp-DemiLight
NotoSansC]Kjp-Light
NotoSansCJKjp-Medium
NotoSansCJKjp-Regular
NotoSansCJKjp-Thin
NotoSansCJKkr-Black
NotoSansCJKkr-Bold
NotoSansCJKkr-DemiLight
NotoSansCJKkr-Light
NotoSansCJKkr-Medium
NotoSansCJKkr-Regular
NotoSansCJKkr-Thin
NotoSansCJKsc-Black
NotoSansCJKsc-Bold
NotoSansCJKsc-DemiLight
NotoSansCJKsc-Light
NotoSansCJKsc-Medium
NotoSansCJKsc-Regular
NotoSansCJKsc-Thin
NotoSansCJKtc-Black
NotoSansCJKtc-Bold
NotoSansCJKtc-DemiLight
NotoSansCJKtc-Light

Introduction to Fonts

NotoSansCJKtc-Medium
NotoSansCJKtc-Regular
NotoSansCJKtc-Thin
NotoSans-Condensed
NotoSans-CondensedBlack
NotoSans-CondensedBlacklItalic
NotoSans-CondensedBold
NotoSans-CondensedBoldItalic
NotoSans-CondensedExtraBold
NotoSans-CondensedExtraBoldItalic
NotoSans-CondensedExtraLight
NotoSans-CondensedExtraLightltalic
NotoSans-Condensedltalic
NotoSans-CondensedLight
NotoSans-CondensedLightltalic
NotoSans-CondensedMedium
NotoSans-CondensedMediumltalic
NotoSans-CondensedSemiBold
NotoSans-CondensedSemiBoldItalic
NotoSans-CondensedThin
NotoSans-CondensedThinltalic
NotoSans-ExtraBold
NotoSans-ExtraBoldItalic
NotoSans-ExtraLight
NotoSans-ExtraLightltalic
NotoSansHebrew-Black
NotoSansHebrew-Bold
NotoSansHebrew-ExtraBold
NotoSansHebrew-ExtraLight
NotoSansHebrew-Light
NotoSansHebrew-Medium
NotoSansHebrew-Regular
NotoSansHebrew-SemiBold
NotoSansHebrew-Thin
NotoSans-Italic NotoSans-Light
NotoSans-Lightltalic
NotoSansMath-Regular (Pi)
NotoSans-Medium
NotoSans-Mediumltalic
NotoSansMono-Black
NotoSansMono-Bold
NotoSansMono-Condensed
NotoSansMono-CondensedBlack
NotoSansMono-CondensedBold
NotoSansMono-CondensedExtraBold

Fonts

NotoSansMono-
CondensedExtraLight
NotoSansMono-CondensedLight
NotoSansMono-CondensedMedium
NotoSansMono-CondensedSemiBold
NotoSansMono-Condensed Thin
NotoSansMono-ExtraBold
NotoSansMono-ExtraLight
NotoSansMono-Light
NotoSansMono-Medium
NotoSansMono-Regular
NotoSansMono-SemiBold
NotoSansMono-Thin
NotoSans-Regular
NotoSans-SemiBold
NotoSans-SemiBoldItalic
NotoSansSymbols2-Regular (Pi)
NotoSansSymbols-Black (Pi)
NotoSansSymbols-Bold (P1i)
NotoSansSymbols-ExtraBold (P1i)
NotoSansSymbols-ExtraLight (Pi)
NotoSansSymbols-Light (Pi)
NotoSansSymbols-Medium (P1i)
NotoSansSymbols-Regular (Pi)
NotoSansSymbols-SemiBold (Pi)
NotoSansSymbols-Thin (Pi)
NotoSansThai-Black
NotoSansThai-Bold
NotoSansThai-ExtraBold
NotoSansThai-ExtraLight
NotoSansThai-Light
NotoSansThai-Medium
NotoSansThai-Regular
NotoSansThai-SemiBold
NotoSansThai-Thin
NotoSans-Thin
NotoSans-Thinltalic
NotoSerif-Black
NotoSerif-Blackltalic
NotoSerif-Bold
NotoSerif-Boldltalic
NotoSerifCJKhk-Black
NotoSerifCJKhk-Bold
NotoSerifCJKhk-ExtraLight
NotoSerifCJKhk-Light
NotoSerifCJKhk-Medium
NotoSerifCJKhk-Regular
NotoSerifCJKhk-SemiBold
NotoSerifCJKjp-Black

PostScript Fonts

NotoSerifCJKjp-Bold
NotoSerifCJKjp-ExtraLight
NotoSerifCJKjp-Light
NotoSerifCJKjp-Medium
NotoSerifCJKjp-Regular
NotoSerifCJKjp-SemiBold
NotoSerifCJKkr-Black
NotoSerifCJKkr-Bold
NotoSerifCJKkr-ExtraLight
NotoSerifCJKkr-Light
NotoSerifCJKkr-Medium
NotoSerifCJKkr-Regular
NotoSerifCJKkr-SemiBold
NotoSerifCJKsc-Black
NotoSerifCJKsc-Bold
NotoSerifCJKsc-ExtraLight
NotoSerifCJKsc-Light
NotoSerifCJKsc-Medium
NotoSerifCJKsc-Regular
NotoSerifCJKsc-SemiBold
NotoSerifCJKtc-Black
NotoSerifCJKtc-Bold
NotoSerifCJKtc-ExtraLight
NotoSerifCJKtc-Light
NotoSerifCJKtc-Medium
NotoSerifCJKtc-Regular
NotoSerifCJKtc-SemiBold
NotoSerif-Condensed
NotoSerif-CondensedBlack
NotoSerif-CondensedBlackltalic
NotoSerif-CondensedBold
NotoSerif-CondensedBoldlItalic
NotoSerif-CondensedExtraBold
NotoSerif-CondensedExtraBoldItalic
NotoSerif-CondensedExtraLight
NotoSerif-CondensedExtraLightltalic
NotoSerif-Condensedltalic
NotoSerif-CondensedLight
NotoSerif-CondensedLightltalic
NotoSerif-CondensedMedium
NotoSerif-CondensedMediumltalic
NotoSerif-CondensedSemiBold
NotoSerif-CondensedSemiBoldItalic
NotoSerif-Condensed Thin
NotoSerif-Condensed Thinltalic
NotoSerif-ExtraBold
NotoSerif-ExtraBoldItalic
NotoSerif-ExtraLight
NotoSerif-ExtraLightltalic

Introduction to Fonts 2-7

PostScript Fonts

NotoSerif-Italic NotoSerif-SemiBold
NotoSerif-Light NotoSerif-SemiBoldItalic
NotoSerif-Lightltalic NotoSerif-Thin
NotoSerif-Medium NotoSerif-Thinltalic
NotoSerif-Mediumltalic XPPOne (Pi)
NotoSerif-Regular XPPTwo (Pi)

To access these Noto fonts, XPP delivers a set of font specs to the noto font library.

2-8 Introduction to Fonts Fonts

PostScript Fonts

Embedding Fonts

PostScript fonts may reside on each output device. In addition, for screen
display, they must reside in the proper format on the XPP system. In some
cases, it may be desirable to embed PostScript fonts from XPP to the output
device with the printed pages. Note that printer throughput is reduced
using this method because the fonts are downloaded with each print task;
they are not loaded into the printer’s memory. Note that font embedding is
required when your PostScript printer does not have the PostScript fonts
stored locally.

When embedding fonts:

® The font must be OpenType, PostScript Type 1 base, or Type 1 CID.
® Store the fonts in the XYV_EXECS/psres/fonts area.
® When using psfmtarv, list the fonts in your enable font download table.

® When using divpdf, fonts are subset embedded by default. You may use
the -nosubset or -noembed options to change the default behavior.

PSRESOURCEPATH Environment Variable

The PSRESOURCEPATH environment variable specifies the path to the
psres (PostScript resources) directory. The psres directory can be a link
elsewhere. This path is important in order to display, download, and output
PostScript or PDE.

On Unix systems, you define the PSRESOURCEPATH environment variable
in the /etc/xyvision/xyv.cshrc and/or /etc/xyvision/
xyv.profile file. The following is an example for the /etc/xyvision/
xyv.profile file:

PSRESOURCEPATH="$XYV_EXECS/psres::”
export PSRESOURCEPATH

On Windows, you define the PSRESOURCEPATH environment variable in
the computer settings. For example, on Windows Server 2022:

1. Select Control Panel > System > Advanced system settings >
Environment Variables.

2. Select New under System variables to add the environment variable
definition.

Fonts Introduction to Fonts 2-9

Font Download Tables for PostScript Fonts

Font Download Tables for PostScript Fonts

A font download table is a simple text file, and may be created and/or
modified using any ASCII or text editor.

You need font download tables to enable/disable font embedding when
you generate a PostScript file in XPP or output to a PS device or when you
create PDF output files via PS-to-PDF workflow (psfmtdrv -distill).

Note: When you activate a font download table, only those fonts needed to output
the current job are downloaded.

When outputting, you use the enable font download (-efd) option to
activate font download tables. Font download tables must be located in the
following directory:

XYV_EXECS/sys/od/ps_dlf/tables

Font download tables must be named table_number,

where number is an integer greater than 1. For example, table_2, table_3, etc.

Format of an Enable Font Download Table

In a font download table, each font appears on a separate line in the
following format:

enable-number font-name

where:

Entry Description

enable-number Specifies whether or not to download this font.
Enter 1 to enable downloading of this font; enter 0 if
you do not want to download a particular font.

font-name Specifies the official PostScript name of the font to

download.

Font Download Table (table_1)
XPP delivers table_1 to the directory:
XYV_EXECS/sys/od/ps_dlf/tables

The following example displays the enable font download table, table_1 :

2-10 Introduction to Fonts Fonts

Fonts

Font Download Tables for PostScript Fonts

N

P =P

NotoSans-Black
NotoSans-BlackItalic
NotoSans-Bold
NotoSans-BoldItalic
NotoSans-Condensed
NotoSans-CondensedBlack

NotoSerif-Thin
NotoSerif-ThinItalic
XPPOne

XPPTwo

Creating Custom Font Download Tables

Because XPP delivers table_1 with each release, you need to copy this table
and rename it, using a different number (table_number), and edit it for your
site. You may have multiple font download tables.

Adding Fonts to Your Font Download Table

1.

2.

Edit the appropriate font control table (table_number). Be sure the lines
in the table begin with a 1 (one) if you want them to be downloaded
and are in the following format:

1 PostScriptfontname
For example:

1 NewBaskerville-Roman

Store and exit the table.

Activating Your Enable Font Download Table

You can activate your font download table from the Print Dialog.

To activate your font download table:

1.
2.

Select the Print tab and select Printer, PS to file, or PS to PDF file.

Select the PS/PDF tab.
XPP displays the PostScript options.

In the PostScript content area, check the box in front of Download fonts.
XPP enables the Control table number field.

Enter the number for the download table you want to use.

When you have finished selecting your print options, press the Run
button.
XPP displays the progress in the right-hand pane.

Introduction to Fonts 2-11

Specs Needed for Display and Output

Specs Needed for Display and Output

2-12

The following table lists the specs XPP needs to display and output
characters. These specs are described in subsequent chapters.

Table 2-2 Specs Needed to Display/Output Characters

Spec Mpnemonic The system uses it to determine

Xyvision Character Set XCS the ASCII escape sequences, character entities,
and Unicode assigned to the characters” XSF
codes.

Keyboard Map KB XSF codes mapped to the keys pressed.

Font Access Table FX details on characters specified by the XSF codes

(FAST) (result of processing PTS, PSE, FGS, and FGX
specs).

Font Variant FV the Primary FAST, Secondary FAST, and Default FAST
mapped to the font family and variant.

PostScript Name PSN PostScript characters mapped to the standard
XCS character set.

Typesetter Font Map TSF PostScript font names mapped to font numbers
and for CSS mode mapping of CSS font
properties to PostScript font names.

Kerning Pairs (optional) ~ KP spacing between specified characters.

Ligature/Accent RP whether input characters are to be replaced by

Replacement (optional) specified accents or ligatures.

Job Ticket none the name of the font library and font variant
spec(s).

Division Ticket (optional) none the name of an alternate font variant spec (if any).

Item Format IF the font family and variant that are currently
active®
This Spec is used only in non-CSS-XML modes.

CSs CSS the font-family, font-style and font-weight

properties that are currently active.?
This Spec is used only in CSS-XML mode.

!Font Variant Specs can reside at the library level or at the job level.

>The system also checks any Font Family (ff) and Font Variant (fv) XyMacros for the currently active font

family and variant.

Introduction to Fonts

Fonts

Specs Needed for Display and Output

How the System Uses the Specs

When you press a key on the keyboard, the system follows a series of steps,
checking the various specs for information. Then it displays the character
onscreen.

The following figure gives an overview of the process involved in
displaying a character onscreen and outputting. For detailed information on
the specs, refer to the individual chapter.

Fonts Introduction to Fonts 2-13

Specs Needed for Display and Output

XCS Spec

The Xyvision Character

Set (XCS) Spec assigns

KB Spec

the XSF codes to
characters.

Job
Ticket
The Keyboard Map Division
{KB) Spec gets the Ticket

= X5F code from the
rule defining the
key cap.

|

IF Spec or
CSS Spec
and XyMacro

|

FV Spec

|

RP Spec

|

FX Spec

KP Spec

TSF Spec

The Job Ticket checks for

— the spec library. Font
Variant (FV) Spec, and
font library specified.

The style bundle and Font
= Variant Spec named here
(if any) override entries in
corresponding Job Ticket
fields (if the Job Ticket
specifies an alternate style).

The Item Format Spec checks for the font family and

T variant, or CSS font properties currently in use.

—The Font Variant Spec checks for a rule matching the font family
and variant, and finds the names of the FASTs specified in that
rule. it also checks whether a Ligature/Accent Replacement Spec
and/or a Kerning Pairs (KP) Spec is specified.

__The Ligature/Accent Replacement (RP) Spec checks for the
character(s) to replace, if any. This occurs only during compaosition.

The Font Access Table (FX) Specs (in the font library specified in
— the Job Ticket) checks the Primary FAST, Secondary FAST, and
Default FAST (in that order) for a rule with the XSF code. It uses
the information in the rule to display and output the character. If
the system cannat find the character, it generates the message:

"Unspecified typesetter character".

The Kerning Pairs (KP) Spec specifies kerning between

~ characters.

The Typesetter Font Map (TSF) Spec is included for display or
— output to determine the actual PostScript fonts to use for characters
and for CSS mode to map CSS font properties to PostScript font names.

Figure 2-2

2-14 Introduction to Fonts

Displaying and Outputting Fonts

Fonts

Specs Needed for Display and Output

When Do I Need to Edit Font Specs?

You need to set up font specs on your system if you:

® Acquire additional fonts.

e Want to customize characters on output.

XPP provides two utilities to facilitate adding fonts to your composition
system: Font Copy and Build FAST.

In many cases, there is very little additional spec editing that you need to
do. However, if you do make changes to a spec, RWS strongly suggests that
you create a backup copy first.

The use of symbols or other special characters requires some specific setup
in order to optimize the composition capabilities of XPP. Both situations are
addressed later in this manual.

How Do I Create New Font Specs?

You can create new specs for FAST Generation (FGS), FAST Generation
Exceptions (FGX), Font Variant (FV), Kerning Pairs (KP), PseudoFont (PSF),
PostScript Name (PSN), Phototypesetter (PTS), and Typesetter Font Map
(TSF).

XPP delivers the Xyvision Character Set and XPP only recognizes the spec
named default. XPP also delivers the Ligature/Accent Replacement Spec
(RP) and XPP only recognizes the one delivered to Lsyslib. Do not attempt
to create, copy, or rename this spec.

To create a new Keyboard Map Spec (KB), copy an existing spec. Refer to
“Modifying a Keyboard” on page 4-13 for complete information.

The Build FAST utility generates the Phototypesetter Spec (PTS) and
corresponding FAST Generation Spec (FGS), and Kerning Pairs Spec (KP) (if
the source font contains kerning pair data). Refer to “Creating Font Specs
with Build FAST” on page 1-10 for complete information.

To create new specs for FGX, PSE, and PSN Specs:

1. Double-click STYLE LIBRARIES from the PathFinder Tree View.
PathFinder displays the available libraries.

2. Right-click Lfontlib (e.g., Lnoto).
PathFinder displays a pop-up menu.

3. Select New > Type of spec you want to create (e.g., FAST Generation
Exceptions).

Fonts Introduction to Fonts 2-15

Specs Needed for Display and Output

PathFinder creates a FAST Generation Exceptions style file (if one has
not already been created) and displays a new spec in the List View.

2-16 Introduction to Fonts Fonts

Unicode Capabilities

Unicode Capabilities

Fonts

XPP has Unicode capabilities. In the case of fonts, this means that XPP can
use the W3C (World Wide Web Consortium) character tables to determine
the case of a character. For example, if you are using a language, such as
Greek, composition allows you to use smallcaps, all upper case, all lower
case, or mixed case transformations of the text.

Introduction to Fonts 2-17

Unicode Capabilities

2-18 Introduction to Fonts Fonts

Chapter 3

The Xyvision Character Set
Spec (XCS)

This chapter contains the following information on the Xyvision Character
Set (XCS) Spec:

Fonts

Understanding the XCS Spec

Learning about the files generated from the XCS Spec
Obtaining updates to the Standard XCS Spec
Modifying the XCS Spec

Understanding the structure of the XCS Spec

The Xyvision Character Set Spec (XCS) 3-1

Understanding the XCS Spec

Understanding the XCS Spec

The XCS Spec contains the definitions of more than 3,000 characters
(including some XPP-specific characters). For each character, XPP has
assigned a unique Xyvision Character Set (XCS) number and many
characters have Unicode values and character entity strings assigned to
them. XPP used to identify and access all characters by these XCS numbers,
but now it uses Unicode values and named character entity or numeric
character reference strings to identify and access all characters.

If a character in the XCS spec has no Unicode value assigned to it, the
implied (custom) Unicode value assignment is taken as the assigned XCS
number added to 0xF0000 (which results in a Unicode value in the
Supplementary Private Use Area-A). Not all characters you enter into a
division document will have a corresponding entry in the XCS spec.

For a named character entity string to be recognized by core XPP, that entity
needs to be assigned to a character in the XCS spec.

In the XCS Spec, each XCS number is associated with the following:

® A name.

e A unique ASCII character sequence. The system uses the ASCII
sequence when converting files to and from Xyvision Standard Format
(only when using Classic mode).

o An XML/SGML character entity string (optional). Required if a
character is going to be accessed using a named character entity string.
In some cases, more than one entity string can be entered for a
character.

® A Unicode value (optional). In some cases, more than one Unicode
value can be entered for a character.

® Characters for the system to use to display XPP-specific characters
(e.g., a pgraf character in the Line Edit window and in spec fields).

® A description (optional) of the character.

When you enter a character in a division, a Unicode number is generated.
Ordinarily, you would not be aware of the underlying Unicode number;
instead, you see the “glyph” or visual representation of the character.

The currently active font family and font variant are mapped to a particular
FAST (Font Access Table), which determines the glyph that the system
selects and places in the division. The font family and variant mappings are
controlled by the active rule in the Font Variant Spec (as specified in the
Family and Variant fields of the tag or by the Font Family (ff) and Font
Variant (fv) XyMacros, or the active CSS font-family, font-style, and font-
weight properties).

3-2 The Xyvision Character Set Spec (XCS) Fonts

Understanding the XCS Spec

When to View the XCS Spec

There are three common reasons to view or edit the XCS Spec:

® To determine the Unicode number that is assigned to a character.

® To determine the ASCII escape sequence (when using Classic mode) or
named character entity of a particular character. This information
helps you find out how to enter the named character when doing a
transformation.

e To modify or assign new named character entity strings.

Accessing the XCS Spec from PathFinder
To access the XCS Spec from the PathFinder:

1. Navigate to STYLE LIBRARIES > Lsyslib > Xyvision Character Set.
PathFinder displays the default character set file in the List View.

2. Right-click the default icon in the List View and select Edit from the
pop-up menu.
—or—
Double-click the default icon.
XPP displays the XCS Spec.

Gaution If you need to modify the spec to implement conversion to and from XML/SGML, change only
the Default Output, Entity Delimiters, and Entity fields as needed.

Modifying any other fields in the spec can cause problems in displaying text.

Accessing the XCS Spec from the Operating System
To access the XCS Spec from your UNIX or Windows file system:

1. Access the XYV_STYLES/Lsyslib directory.

2. Use either of the following options:
In Windows Explorer, double-click _xcs_default.sde
—or—
From the command line, type the following command at the operating
system prompt:
sdedit xcs default

Note: To view rather than edit the spec, use the —r switch after the Sdedit program
name.

Fonts The Xyvision Character Set Spec (XCS) 3-3

Learning About the Files Generated from the XCS Spec

Learning About the Files Generated from the XCS Spec

This section provides background information and is included only to help
you understand how the XCS Spec works. You should rarely, if ever, need to
view or edit these files.

The following table lists the files generated from the XCS Spec, the XCS
Spec fields used to generate each file, and how the system uses each file.
These files are in XYV_STYLES/Lsyslib.

Table 3-1 Files Generated from the XCS Spec

XCS Spec
File File Name field The file is used to...
ASCII to XSF _a2x_default.p Ascii Perform ToXSF and Importxsf
(Classic mode only)'
Unicode to XSF _u2x_default.p Unicode Perform ToXSF and Importxsf
(SGML and XML /CSS modes)
XSF to ASCII _X2a_default.p Ascii, Perform FromXSF, Xsfchange,
Entity, Showxsf, etc.”?
Unicode
XSF to Terminal _x2t_default.p Line Ed Display XPP-specific characters
in the Line Edit window and in
spec fields
ASCII to XSF _a2x_default.m Ascii Provide information 0n1y3.

L ToXSF is the program for converting text from XyASCII to Xyvision Standard Format.
2FromXSF is the program for converting text from Xyvision Standard Format to XyASCIL.

3This file contains a list of the available XyASCII escape sequences, by keyboard (for Classic mode only).
The system does not use this file; it is only for informational purposes. You can print it for reference.

Wrnin g

The files generated from the XCS Spec are critical to XPP operation. Do not copy,
edit, or delete any of these files. If you should need to check or verify the contents of
any of these files, use the showxcs program.

ASCII to XSF Files

When using Classic mode, the ToXSF and Importxsf programs convert text
from XyASCII format to Xyvision Standard Format. XyASCII text files
contain ASCII escape sequences for characters that cannot be represented by
single ASCII characters (e.g., special characters such as math symbols). The
ToXSF program replaces the ASCII escape sequences with the
corresponding XPP codes and Unicode characters. Refer to the XML
Professional Publisher: Transformaing Data for information on the ToXSF

3-4 The Xyvision Character Set Spec (XCS) Fonts

Fonts

Learning About the Files Generated from the XCS Spec

program. When using SGML or XML/CSS modes, the ToXSF and Importxsf
programs import UTF-8 characters and convert named character entities
and numeric character references to Xyvision Standard Format.

XyASCII escape sequences

A XyASCII escape sequence can be a string of one, two, or three characters
(for Classic mode only), a named character entity string, or a numeric
character reference string (representing a Unicode value):

® A one-character string consists of the character itself. For example, a
capital “A” is a valid ASCII escape sequence.

® A two-character string consists of a backslash (\) followed by a single
character (Classic mode only). Characters with this type of XyASCII
escape sequence appear on the Default keyboard (keyboard d).

® A three-character string consists of a vertical bar (|) followed by a
two-character string (Classic Mode only). The first character in the
string represents the keyboard on which the character appears (e.g., c
for the Chemical Arrows keyboard). The second character represents
the key cap that you press to access the character.

® A named character entity string consists of an ASCII string beginning
with an ampersand (&) and ending with a semicolon (;)—but, you do
not enter the & and ; in the Entity field.

® A Unicode value can be expressed as a decimal (d32 through
d1114109) or a hex (x20 through x10FFFD) in the Unicode field. Each
Unicode value can map to one and only one XCS character. However,
several different Unicode values can map to the same XCS character.

In Classic mode, if the system finds a backslash or a vertical bar when
converting an ASCII text file to Xyvision Standard Format, it interprets the
subsequent characters as the XyASCII string. Next, it reads the
_a2x_default.p file and finds the matching XCS number and (first) Unicode
value (which may be calculated from the XCS number if a Unicode value is
absent). In SGML and XML/CSS modes, it reads the _a2x_default.p file to
look up named character entity strings to get the Unicode value. Finally, the
system uses the Unicode value to access the character glyph for screen
display and printer output. During composition it uses the Unicode value
to access the necessary character information (e.g., the character width).

Note: You do not ever actually see the XCS numbers in a document or a file.

XSF to ASCII File

The system uses the XSF to ASCII file _x2a_default.p when running the
programs which convert XSF files from Xyvision Standard Format to
XyASCII (for example, FromXSF). When processing the XSF file, the system
reads the x2a_default.p file and replaces the Unicode value with the

The Xyvision Character Set Spec (XCS) 3-5

Learning About the Files Generated from the XCS Spec

corresponding XyASCII sequence (Classic mode only), named character
entity string, or UTF-8 character.

Refer to the XML Professional Publisher: Transformaing Data manual and to
the online help files for information on the programs that convert XSF to
XyASCII format.

XSF to Terminal File

System fonts cannot by default represent XPP-specific characters in the Line
Edit Window or in spec fields (e.g. the pgraf character). In these cases, the
system uses the information in the XSF to Terminal file x2t_default.p to
determine what character to use from the XPP-installed system font.. Do not
copy, edit, or delete this file.

This file contains information such as the contents of the Line Ed field from
the XCS Spec. In Classic mode, for XPP-specific characters, the system
searches the file and displays the Line Ed string defined for that character.

3-6 The Xyvision Character Set Spec (XCS) Fonts

Obtaining Updates to the Standard XCS Spec

Obtaining Updates to the Standard XCS Spec

When you upgrade software, the program delivers the latest XCS Spec to
XYV_STYLES/xylibrary /Lsyslib.

Copy the latest XCS Spec to the directory where the system can use it, that
is, copy the XCS Spec from XYV_STYLES/xylibrary/Lsyslib to
XYV_STYLES/Lsyslib.

Gau tion

Fonts

When you copy the latest XCS Spec, you overwrite the XCS Spec in the syslib library. Save
any edited rules according to the following instructions before copying the spec. As an
alternative, you can check for custom changes to the spec using the upgradexcs.pl or
update_xcs.pl utilities to help update your XCS spec. For more information, see desciptions
of these utilities in| XML Professional Publisher: Command Line Ultilities.

Copying an XCS Spec

To copy the latest version of the XCS Spec:

1. If you edited the XCS Spec, save the edited rules before copying the
latest XCS Spec.

To save these rules:

® Access the Spec
® Select the rules

® Save the rules
e [f the rules are contiguous, you can save several rules in one
buffer (i.e., use the Save and Restore options on the Softkey menu).
e [f you selected rules that are not contiguous, you can use the
Copy Append function from the Edit menu on the Sdedit Tool
bar (i.e., save the selected rules to a cut buffer).

2. Copy the file _xcs_default.sde from XYV_STYLES/xylibrary/Lsyslib/ to
XYV_STYLES/Lsyslib/

3. If you saved edited XCS Spec rules to save buffers, restore them to the

Spec in XYV_STYLES/Lsyslib/.

a. Access the XCS Spec in XYV_STYLES/Lsyslib.

b. Use the Restore function on the Softkey menu. (Menu > Select >
Restore) to restore the edited versions you saved in the save
buffers.

If you used the Copy Append function from the Edit menu on the
Sdedit Tool bar, paste the rules into the XCS Spec using the Edit
menu on the Sdedit Tool bar.

The Xyvision Character Set Spec (XCS) 3-7

Obtaining Updates to the Standard XCS Spec

The spec now contains both the edited versions of those rules and
the newly delivered versions of those rules.

c. Select and delete the newly delivered versions of the rules. The XCS
Spec now contains the latest updated information plus any edits
you may have made.

4. Run GenXCS to access the information in the latest XCS Spec. (Refer to
page 3-11 for details.)

Updating the XCS Spec
To update the current XCS spec after an upgrade:

o If there have been few (or no) XCS spec customizations, first run the
upgradexcs.pl utility at a command prompt.

o If there have been extensive XCS spec customizations, run the
update_xcs.pl utility.

For more information about these utilities, refer to XML Professional,
\Publisher: Command Line Ultilities

Note: You can access full details about the syntax and available options of each
utility by entering one of the following at a command prompt:

perldoc %XYV_EXECS% \procs\sc\utility (Windows)
perldoc $XYV_EXECS/procs/sc/utility (Linux)

where utility is upgradexcs.pl or update_xcs.pl.

3-8 The Xyvision Character Set Spec (XCS) Fonts

Modifying the XCS Spec

Modifying the XCS Spec

You seldom need to edit the XCS Spec because XPP has already pre-
assigned XyASCII escape sequences (for Classic mode) to all XCS numbers
in the XCS Spec, even to custom XCS numbers (1281 - 2559), and the most
commonly used Unicode values and named character entity strings have
been assigned as well.

Note: Multiples of 256 are invalid XCS numbers. The Sdeditor does not allow you
to enter an invalid XCS code in the XCS field and displays an “Invalid XSF code”
message.

However, you may need to modify the XCS Spec if you need to perform
one of the following tasks:

® Change or add a named character entity string or Unicode value.

o Add a new character.

Gau tion

Fonts

Edits to the XCS Spec may affect previously completed work.

First, refer to The Xyvision Character Set to see if the character you want is
already in the XCS Spec and is therefore, assigned to a keyboard and key

cap.

If you want to re-map a character to a different key cap or different software
keyboard, edit a Keyboard Map Spec. Refer to the|“The Keyboard Map Sped|
(KB)”|on page 4-1.

Editing or Adding a Named Character Entity String

To add a named character entity string in the XCS Spec:
1. Access the XCS Spec.

2. Locate the rule for the XCS/Unicode character for which you want the
XML/SGML named character entity to be recognized.

3. Enter the entity name in the Entity field. You may enter multiple entity
names by using a space as a delimiter, but the entire Entity field may
not exceed 92 characters.

Do not enter the entity delimiter characters; those are defined in the
header section of the spec in the Begin and End fields, usually
ampersand (&) for the Begin field and semi-colon (;) for the End field.

4. Indicate in the File Comment or Table Comment field which rule(s) has
been edited.

The Xyvision Character Set Spec (XCS) 3-9

Modifying the XCS Spec

5.

Run the Generate XCS (GenXCS) program to process and activate your
edits.

Editing or Adding a Unicode Value

To add a Unicode value to the XCS Spec:

1.
2.

Access the XCS Spec.

Locate the rule for the XCS character for which you want the Unicode
value to be recognized.

Enter the Unicode value in the Unicode field. You may enter multiple
Unicode values by using a space as a delimiter, but the entire Unicode
tield may not exceed 92 characters.

Indicate in the File Comment or Table Comment field which rule(s) has
been edited.

Run the Generate XCS (GenXCS) program to process and activate your
edits.

Assigning a Custom Character

To add a new character:

1.

Optionally, edit the Name, Description, Entity, and Unicode tields in an XCS
Spec rule in the XCS number range 1281 - 2559 (excluding multiples of
256, which are invalid) for the new character.

If you edited the XCS file, run the Generate XCS (GenXCS) program to
process and activate your edits.

Add the new Unicode value to all necessary PTS, PSE, and/or FGX
Specs, then run GenFAST as you would for any other font spec
change.

If you want to remap the new character to a different keycap, edit a
Keyboard Map Spec. See “The Keyboard Map Spec (KB)” on page 4-1.

Indicate in the File Comment or Table Comment field which rule(s) has
been edited.

Editing the Name and Description Fields

To edit the Name or Description field in the XCS Spec:

1.

Access the XCS Spec.

3-10 The Xyvision Character Set Spec (XCS) Fonts

Modifying the XCS Spec

2. Locate the desired rule in the XCS number range reserved for custom
characters — 1281 through 2559 (excluding multiples of 256).

3. Edit the Name and Description fields for the character you are adding,
and optionally the Entity and Unicode fields. You do not need to edit the
Line Ed field. Do not edit the XCS No., or Ascii fields. Refer to the section
“XCS Rule Fields” for information on the valid entries for the rule
fields.

4. Indicate in the File Comment or Table Comment field which rule(s) has
been edited.

5. Store the XCS Spec.

6. Run the Generate XCS (GenXCS) program to process and activate your
edits.

Gau tion

Fonts

Do not modify any rules except those for XCS numbers 1281 - 2559 (excluding multiples of
256). If you edit fields in other rules, you may not be able to access those characters.

Running GenXCS

For the system to access the edits you made to an XCS Spec, you must run
GenXCS (Generate XCS).

To run GenXCS:
1. In PathFinder, right-click the default XCS Spec.
2. Select Tools > Generate XCS from the pop-up menu.

3. Click the OK button when GenXCS displays a message box indicating
that the GenXCS process is complete.

When you run GenXCS, the system creates five files, as listed in the table on
page 3-4, These files contain information the system needs to run ToXSEF,
FromXSF, etc. and to display characters in the Line Edit window and spec
fields. Consult this table to familiarize yourself with the files.

Note: You can also run GenXCS from the operating system command line. For
information, consult the XML Professional Publisher: Command Line Ultilities
manual or you can enter xyhelp genxcs at the operating system prompt to access
the online help file.

The Xyvision Character Set Spec (XCS) 3-11

Modifying the XCS Spec

Locating Unused XyASCII Sequences

XPP delivers an _a2x_default.m file to XYV_STYLES/Lsyslib along with the
delivered XCS files. This file contains a map of all the unused XyASCII
sequences (used for Classic mode only). Once you have modified the XCS
file, you can generate a new _a2x_default.m file.

To locate unused XyASCII sequences:

® Run genxcs —m from the command line.
This command generates a new _a2x_default.m file.

You can select an unused XyASCII sequence and add it to any new
characters you have added/defined in the spec.

3-12 The Xyvision Character Set Spec (XCS) Fonts

Understanding the Structure of the XCS Spec

Understanding the Structure of the XCS Spec

The XCS Spec default name is _xcs_default.sde and must be located in the
syslib library. This is the only XCS Spec name that XPP recognizes, though
you may have copies with different names.

The XCS Spec consists of the following sections:

® Header — contains comment, default output, and entity delimiter
fields.

® Rules — contains rules defining characters.

The following figure shows the structure of the XCS Spec and sample rules
which define various types of characters. For example, the rules show
XPP-specific characters (e.g., the pgraf), space characters (e.g., the figure
space), and uppercase alphabetic characters (e.g., A).

T# syslib/ Master xcs default M=l 3
File Edit View Insert Select Help

LL-

File Comment |[Sept 14, 1998: Added entity support; added Euro character.
Sept 18, 2000: Add Unicode field, initial Unicode values.
Mar 13, 2001: Corrected several Unicode and entity values.
Apr 27, 2001: Rev from UOOZ to UOO3 for 32 to 128 Entity chars.

~Table Comment |§tandar‘d XCS character set for XPP 5.1.

L Default Output: [Ascii 4 Entity Delimiters: Begin[&@ End[;

Name [pgraf XCS |d16 Ascii % Entity |
Line Ed [n016 nicode
L Descrip [pgraph mark

HName |figure_space XCS [d27 Ascii Nf - Entity [numsp
Line Ed [~0Z27 Unicode |d§199

I Descrip |figure space

HName |uc_n XCS |d65 fizcii |a Entity |

Line Ed Unicode |d65

LDescrip |A -
Ins Comment Field Tahle © of 1 Rule 1 of 3473 Fld 1

XCS Spec Fields

Following are descriptions of the fields in the XCS Spec and the values you
can enter in them.

The Xyvision Character Set Spec (XCS) 3-13

Understanding the Structure of the XCS Spec

Header Fields

The header of the XCS Spec contains the following fields:

Table 3-2 XCS Spec Header Fields
Field Valid Description
Name Entry
File Ascii text Generally used to store comments about the edit history
comment of the file.
Table Ascii text Generally used to describe the contents of the body
Comment rules.
Default When exporting from XPP, use ...
Output
Ascii To output XyASCII escape sequences and ignore the
Entity field. This is the default.
Entity To output XML/SGML named character entities when
Unidec they are defined.
To produce the first value of the Unicode field, if present,
as a decimal numeric character reference. Outputs a
Unihex decimal character in the format: –.
To produce the first value of the Unicode field, if present,
as a hex numeric character reference. Outputs a hex
character in the format: ⠑.
Note: This field value is often overridden by options used during export.
Entity
Delimiters:
Begin Ascii Enter the character that marks the beginning of an
character =~ XML/SGML entity. There is no default for this field. The
ampersand (&) character is the most commonly used in
XML/SGML.
End Ascii Enter the character that marks the end of an XML/SGML
character entity. There is no default for this field. The semi-colon (;)
character is the most commonly used in XML/SGML.
Rule Fields

The XCS Spec contains a rule for each character. RWS recommends that if
you modify the _xcs_default.sde Spec at all, only modify the Name, Entity,
Unicode, and Description fields.

3-14 The Xyvision Character Set Spec (XCS) Fonts

Fonts

Understanding the Structure of the XCS Spec

Table 3-3 XCS Spec Rule Fields

Field
Name

Valid Description
Entry

Name

Briefly describes the character defined in this rule. Rules for XCS
numbers 1281 - 2559 (excluding multiples of 256) contain the entry
custom. You may want to delete this entry and enter the name of the
character.

GenFAST puts this name into the Character Comment field of the
FAST Spec (truncating it at a space, if there is one).

string A unique name consisting of up to 12 alphanumeric
characters. Do not insert spaces between characters;
enter an underbar instead of a space.

XCS No.

The Xyvision Standard Format (XSF) code assigned to the character
defined in this rule, preceded by a letter denoting the notation. This
field can contain XCS numbers in the decimal ranges d23 through
d6143 (octal 027 through 013777 or hexadecimal x17 through x17FF).
Typically, decimal notation is used.

Do not modify the XCS No. field. To add a character to the XCS Spec,
locate a rule in the XCS number range 1281 - 2559 (excluding
multiples of 256).

Each XCS number can appear only once in the XCS Spec.

Ranges of XCS numbers (in decimal) are reserved for certain types of
characters:

XSF Code Reserved for...
Range

1-1280 XPP-defined characters. This range includes characters
for system use (d1 - d22)

1281- 2559 User-defined characters
2561- 6143 XPP-defined characters

Add user-defined characters, such as company logos, to the rules for
XCS numbers 1281 through 2559 (excluding multiples of 256). XPP
does not routinely deliver screen glyphs for these XCS numbers.
Unless you have acquired a PostScript font glyph for these characters,
XPP displays reverse-video question marks onscreen and a blank
space on output. XPP uses the specified character widths during
composition.

The Xyvision Character Set Spec (XCS) 3-15

Understanding the Structure of the XCS Spec

Table 3-3 XCS Spec Rule Fields (Continued)

Field
Name

Valid Description
Entry

Ascii

The ASCII character (e.g., a, 1, #, and so on) or the XyASCII escape
sequence (used in Classic mode only) representing the character
defined in this rule. The system uses the information in this field
when converting files to and from Xyvision Standard Format (i.e.,
when running the ToXSF or FromXSF programs) when the Default
Output field is set to Ascii.

If the system does not have a screen glyph of a character and the Line
Ed field does not contain an entry, the system displays the contents of
this field to represent the character in the Line Edit window, in Text
Mode, and in spec fields. In some cases, when both the Ascii and Line Ed
fields are blank or an entered Unicode value does not have an XCS spec entry or
does not have a glyph in the specified system fonts, XPP may display a character as
a small box with the hex Unicode value displayed within it.

XPP has assigned an ASCII character or XyASCII escape sequence to each XCS
number in the user-definable range 1281- 2559 (excluding multiples of 256). Do
not change these.

To add a character, choose a rule in the user-definable range. If the
XCS Spec contains rules with duplicate XyASCIl sequences, GenXCS
does not run successfully.To locate an unused XyASCII sequence,
refer to page 3-12.

A XyASCIl escape sequence can be a one-character, two-character, or
three-character string. If you want to key in some characters using a
key sequence different from the one listed in the XCS Spec, you do
not need to change their XyASCII escape sequences in the XCS
Spec—instead, modify a keyboard spec. Refer to the ”“The Keyboard
Map Spec (KB)” on page 4-1.

Entity

Enter the name(s) of an XML/SGML named character entity. You may
enter one or more entity names delimited by spaces. The maximum
Entity field length is 92 characters. This number includes all names and
delimiting spaces. The maximum number of characters for each entity
name is 32.

Enter only the entity name(s) itself without the delimiters defined in
the header fields Begin and End.

This is an optional field, that is, you only use it when you have an
XML/SGML named character entity that you want recognized as a
single XCS/Unicode character.

When transforming for output in Classic mode, XPP only uses a value
in this field when the Default Output field is set to Entity or you use
the —ent switch when running from the command line. Otherwise the
value is taken from the Ascii field.

Line Ed

This field is used to specify how to display XPP-specific characters
(e.g. a pgraf) in the Line Editor and spec fields. Do not edit this field.

3-16 The Xyvision Character Set Spec (XCS) Fonts

Fonts

Understanding the Structure of the XCS Spec

Table 3-3 XCS Spec Rule Fields (Continued)

Field

Valid Description

Name Entry

Unicode Use this field to specify Unicode values for the characters in the XCS

Spec. You can enter a maximum of 92 characters which includes zero,
one, or multiple entries that are space separated.

Unicode values can be expressed as either a decimal value (from
d32-d1114109) or a hexadecimal value (from x20-x10fffd).

Each Unicode value can map to one and only one XCS character.
However, several different Unicode values can map to the same XCS
character.

Description Enter a brief comment describing the character defined in this rule.

string A comment up to 80 characters long, including
uppercase and lowercase characters, spaces, symbols
(such as $, &, /) and the integers 0-9).

Print XCS Layout

To print the XCS layout from PathFinder:

1.

Navigate to STYLE LIBRARIES > Lsyslib > Xyvision Character Set.
PathFinder displays the XCS default Spec in the List View.

Right-click default.
PathFinder displays a pop-up menu.

Selec Tools > Print Character Layout.
XPP displays the Print Keyboards utility window, Task Select.

In the Keyboard /Character Font Maps section, select the following

sequence: Generate Layouts > OK > Character Set > OK.

The Print Keyboards utility displays the following messages:

Processing Keyboard ...

Processing Xyvision Character Set layout.

The utility displays a second message box stating that the process is

complete and provides the location of the newly created division.

The message box also asks if you want to examine the division?

® (Click Cancel to close the window and stop the process.

® Click No and the Print Utility gives you an opportunity to select
another task.

® (Click Yes and XPP opens the division in the XyView.

When you close the division, the Print Keyboards utility offers you the
opportunity to select another task.

For additional information on the Print Keyboards utility, refer to “Print a
Keyboard Mapping” on page 4-14.

The Xyvision Character Set Spec (XCS) 3-17

Understanding the Structure of the XCS Spec

Note: XPP prints only characters for which a PostScript font is available on your
system.

3-18 The Xyvision Character Set Spec (XCS) Fonts

Fonts

Chapter 4

The Keyboard Map Spec
(KB)

This chapter contains the following information on the Keyboard Map (KB)
Spec:

® About Keyboards and key caps

¢ Understanding the Keyboard (KB) Spec

® Modifying KB Specs

e Updating KB Specs

The Keyboard Map Spec (KB) 4-1

About Keyboards and Key Caps

About Keyboards and Key Caps

To input characters in a division, you typically access them using the
keyboard. KB Specs map Unicode numbers or character strings to keys.

Using XPP, you can access Standard and alternate keyboards. These are
software keyboards. The Standard keyboard maps characters to the keys on
an actual U.S. keyboard and the alternate keyboards allow you to access
characters not printed on the keys.

The Standard keyboard consists of characters such as the lowercase and
uppercase English alphabet and the Arabic numerals 0 through 9. This
keyboard is active when you open a division.

There are more characters available than there are key caps on a keyboard.
Additional characters are mapped to key caps on alternate keyboards —
keyboards other than the Standard keyboard. Alternate keyboards typically
contain logically grouped Pi (non-alphanumeric) characters, for example,
the Arrows keyboard (keyboard a) and the Bullets/Circles keyboard
(keyboard b).

The name that displays in the Keybd field of the XyView Status area while
the keyboard is active comes from the name field of the KB Spec. Refer to
the section “Structure of the KB Spec” on page 4-7 for information on the
valid entries for this field.

Note: Although XPP maps characters to software keyboards, you may not be able
to access a given character unless you have installed the appropriate PostScript font
on your XPP server.

Standard and Alternate Keyboards

Characters are mapped to keyboards named by a single alphabetic or
numeric character (a-z, 0-9) or by 2-leter names indicating uppercase
alphabetic characters (e.g., file kb_uh is keyboard H). XPP delivers the
Standard keyboard (keyboard 0), keyboard 1, and many alternate keyboard
specs, as shown in Table 4-1.

Many of the keys on keyboards h, i,j, k, I, o, p, H, I,], and K are assigned to
custom Unicode numbers, and therefore do not have characters mapped to
them. You can edit the KB Specs for these keyboards to map custom
characters or strings to the key caps.

Keyboards 3 through 9 are reserved for customer use. RWS reserves the
right to deliver all other keyboards.

The following table identifies the XPP-delivered keyboards and provides
sample characters for each keyboard.

4-2 The Keyboard Map Spec (KB) Fonts

Fonts

Table 4-1 XPP-delivered Keyboards

About Keyboards and Key Caps

Keyboard ID Keyboard Name
(filename)

o' Standard?2

1? Pi

2 4.2 math macros
a Arrows

A (ua) Accents

b Bullets/Circles

B (ub) Boxes/Squares

C Chemical Arrows
C (uc) Chemical bonds
d Default

D (ud) Accents/Chars 2
e Math Option

E (ue) Accents/Chars 3
f Accents/Chars 1
F (uf) Math Segments
g Greek Alphabet
G (ug) Greek Text

L (ul) Lesser/Greater
m Equals/Similars
M (um) Math Symbols

n Subsets/ Angles
N (un) Math /Multi-line
O (uo) Ornament Keycap
P (up? Punct/Symbol

q Dingbats 200

Q (uq) Dingbats 300

Sample Characters

aB25#& /@
Sp® A
Wsd Wed)] Mintg)]
7098%

v:_\°/5

s 0@

mE°
oel|lse=e’
N=00=2\ e’

>flx§<ce +P

0lTtdomLA’
NA3?
<-n°

.5

Shor ¢ f
L
r T
NA3
§p®_A ™S
NA3

NAZ

The Keyboard Map Spec (KB)

4-3

About Keyboards and Key Caps

Table 4-1 XPP-delivered Keyboards (Continued)

Keyboard ID Keyboard Name Sample Characters
(filename)

r Rules - Borders NA?

R (ur) Cyrillic-Text NA3?

s Shapes *AV ANV

S (us) Symbols h & g P :md

t Greek Piece Accents (part 1) NA3

T (ut) Greek Piece Accents (part 2) NA?

u XML/SGML Entities NA*

U (uu) XML/SGML Entities NA*

w Hebrew Text NA?

X JIS Symbols gapanese characters
y Hiragana Japanese characters
Y (uy)® Katakana Japanese characters®
z Zodiac/Weather w = S N°

Z (uz) Dingbats 100 D@ e @°

1Do not edit the Standard keyboard (keyboard 0).

2XPP delivers the same characters on the Punct/Symbol keyboard P and keyboard 1. Keyboard 1 is also

mapped to the [ALT KYBD] key and the PI key for easy access.

3NA = Not Available. Characters on this keyboard are not part of the standard font delivery. You can

access them only if you have purchased the appropriate fonts.

*Added for keyboard access to XML/SGML entities.

SSome characters on this keyboard are not part of the standard font delivery. You can access them only if

you have purchased the appropriate fonts.

Displaying Characters

In the Line Edit window, the system displays the contents of the Ascii field
(i.e., the XyASCII escape sequence for the character) in the XCS Spec if a
Unicode character has a XyASCII escape sequence defined in the XCS Spec

and the Unicode value is in the Private Use Area range or the specified

system fonts do not contain a glyph for the character.

4-4 The Keyboard Map Spec (KB)

Fonts

About Keyboards and Key Caps

Generally, the system displays characters with one- or two-character escape
sequences. Characters from the default keyboard (keyboard D) have
two-character Xy ASCII escape sequences. The system has screen glyphs
(from the XYmono character set) to represent most of these characters in the
Line Edit window.

To display three-character escape sequences, the system displays the
vertical bar (1) as four dots (::). The remaining two characters of the escape
sequence follow the four dots.

The first character after the four dots represents the keyboard on which the
character appears. The second character represents the legend (i.e., key cap)
to which the character is mapped. For example, ::B5 = | B5 and means the
character is on keyboard B (Boxes/Squares keyboard), key cap number 5.

An accent indicator symbol, 4, in the Line Editor indicates a 2-piece
accented character: first the accent, then the base. For example, 2’ e
indicates a lowercase acute accent over a lowercase e, whereas A::AAE
indicates an uppercase acute accent (::AA) over an uppercase E.

Two-piece accented characters may be keyed in the XyView using the F2
(Accent) key. If accented characters exist in the imported XyASClII file, they
are preceded by |$$ which indicates to float (center) the accent over the
base. The accent indicator symbol, 4, is not present with one-piece accented
PostScript characters, nor is it present if non-spacing marks are enabled, in
which case, the base character is just followed by its Unicode non-spacing
accent character(s).

For information on entering a two-piece accented character, refer to
15 in the XML Professional Publisher: User Guide,

Any up and down arrows in the Line Editor indicate that composition has
replaced the input characters with a modified representation, usually due to
RP Spec entries. “The Ligature/Accent Replacement Spec (RP)”, on page
16-1, explains how to display information in the Line Edit window to show
ligature and accent replacement.

Difficulty Displaying Characters

If a PostScript character is not available, composition displays a reverse-
video question mark on the screen in the page display. There are two
instances in which this may happen:

® You enter a character that is mapped to a custom Unicode number
(xF0501-xF0856), but the font you are using does not contain the
character.

® You enter a character mapped to a standard Unicode number, but that
character is not included in any active FAST. Composition reports an
“Unspecified typesetter character” error message.

Fonts The Keyboard Map Spec (KB) 4-5

About Keyboards and Key Caps

® You can right-click the character in the Xyview to see the unspecified
typesetter character’s Unicode, entity, escape sequence, and other
character values.

If you press a key to which no character is mapped, the system beeps and
does not enter any character.

4-6 The Keyboard Map Spec (KB) Fonts

The Keyboard Spec (KB)

The Keyboard Spec (KB)

Fonts

The following section describes the structure of the KB Spec and the
organization of its rules.

Structure of the KB Spec

The KB Spec consists of the following sections:

® Header — contains comment and name fields.

® Rules — contain rules mapping characters to legends (i.e., key caps).

The following figure shows the structure of the KB Spec and sample rules.
The spec shown is for the Standard keyboard (0). The figure shows rules
from various parts of the spec (i.e., the rules in the figure are not

contiguous).

il
File Edit View Insert Select Help
File Cumment]This is Xyvision’s Standard Domestic Keybhoard —— DO NOT EDIT j

Rule 1:
*Rule 33:
*Rule 49:
*Rule 66:
*Rule 96:

**Rule 1293:

Rule 161:

MOTE: *for

Tahle Comment

ame [Standard

No. [dO
I* unused *

No. [dO
ASCII Control A

Unicode
[Legend

Unicode
[Legend

No. |[dO
ASCII Control B

No. |d43
m

MNo. |d49
h

Mo. |d65
h

Mo. i66
e

MNo. |d8195

ASCITI Control M

Mo. |[d8194

ASCII Control N

Unicode
[Legend

Unicode
[Legend

Unicode
[Legend

Unicode
[Legend

Unicode
[Legend

Unicode
[Legend

Unicode
[Legend

Aux ASCII Controls
Uariabhle Space
Numerics

Upper Case Alpha
Lower Case Alpha
Xyvision Specials *
No Break Space
DEC and Xyvision

Rule
*Rule
*Rule
*Rule
*Rule
*Rule

Rule

257:
289:
305:
322:
354:
365:
417

* unu
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl

**for Xyvision only

sed *

Variable Space
Numerics

Upper Case Alpha
Lower Case Alpha
Xyviszion Specials
Mo Break Space

Hulti—tu—nnel

Description

Multi-to-one |

Description

Hulti—to-one |

Description

Multi-to-one [

Description [0

Multi-to-one |

Description |1

Hulti-to-one [

Description [A

Multi-to-one [

Description ﬁ

Multi-to-one |

Descriptinn|em space

Hulti-to-one |

Descriptinn|en space

[Ins ASCII Tahle

1 of 1

Figure 4-1 Keyboard Map Spec

Rule 7?7

of

The Keyboard Map Spec (KB)

512

Flda 1

4-7

The Keyboard Spec (KB)

Header Fields

The header includes two comment fields and the Name field.

Table 4-2 KB Spec Header Fields

Field Valid Description

Name Entry

Name Enter the name of the keyboard defined by this spec. This name
appears in the Keybd field of the XyView Status area when you access
this keyboard.

RWS recommends entering a name indicating the type of characters
on the keyboard. For example, if the keyboard contains symbols
commonly used by the pharmacology department, enter
Pharmacology in this field. When you access this keyboard,
Pharmacology appears in the Keybd field of the Status window.

string A string, up to 20 characters long, consisting of uppercase
and lowercase characters, spaces, symbols (such as $, &,
/), the integers 0-9.

Rule Fields

Each rule maps a character to a U.S keyboard legend (i.e., keycap). The
characters printed on key caps may vary according to keyboard. To
accommodate these differences, the character printed on the key is referred
to as the legend. Legend names may imply either unshifted or shifted key
caps, though not apparent from the name. For example, the legend $ is a
shifted keycap on most keyboards ($ is a number 4 + shift).

Table 4-3 KB Spec Rule Fields

Field Valid Description

Name Entry

Unicode The Unicode number assigned to the character defined in this rule,
No. preceded by a letter denoting the notation (e.g., d for decimal).

This field defaults to d0 if there is no character assigned to that
position, although octal or hexadecimal notation could also be used.

dinteger A positive decimal integer in the ranges d32 through
d63487, and d63744 through d1114109.

ointeger A positive base 8 (octal) integer in the ranges 040 through
0173777, and 0174400 through 04177775.

xinteger A positive base 16 (hexadecimal) integer in the ranges x20
through xF7FF, and xF900 through x10FFFD.

4-8 The Keyboard Map Spec (KB) Fonts

Fonts

The Keyboard Spec (KB)

Table 4-3 KB Spec Rule Fields (Continued)

Field Valid Description

Name Entry

Multi-to- Enter the character string you want to access using this key cap. The
one character string can consist of text, XyMacros, tags, and so on. For the

system to use the entry in this field, the Unicode number must be
zero. To enter a character from an alternate keyboard, use the
corresponding XyASCII escape sequence.

When you select this key cap from this keyboard while editing a
division, the system inserts the character string. If you use a set of
XyMacros frequently, you may want to map them to key caps on an
alternate keyboard for easy access.

string A string, up to 512 characters long, consisting of
uppercase and lowercase characters, spaces, symbols
(such as $, &, /), the integers 0-9, XyMacros and tags.

Legend This field identifies the symbol printed on the U.S. keyboard key cap
defined in this rule. XPP delivers the KB Spec with the Legend field of
each rule already filled in. You cannot edit this field, nor can you
search on it or even place your cursor on it. The KB Spec contains
many rules that are not currently used (that is, Unicode numbers are
not mapped to the legends).

Description Enter a brief comment describing the character defined in this rule.

string A comment up to 80 characters long, including uppercase
and lowercase characters, spaces, symbols (such as $, &,
/) and the integers 0-9.

Organization of KB Spec Rules

The rules in the KB Spec correspond to the International Organization of
Standards (ISO) Latin standard character set. Rules exist for every possible
key cap on a U.S. Latin keyboard; however, in XPP, not all rules are filled in.

The rules in each keyboard spec are grouped according to the type of
legend: unshifted, shifted, control+, and so forth. Each keyboard spec has
the same set of rules; what makes each spec unique is the keyboard letter
with which it is associated. For example, the “7” legend represents a
different character on different keyboards:

—<c keyboard = short right arrow

—b keyboarad = solid bullet #7

—G keyboard = Greek alternate lowercase kappa

The following table shows the rule numbers and the legends or group of

legends that are mapped to those rules. This information also appears in the
Table Comment field of the KB Spec.

The Keyboard Map Spec (KB) 4-9

The Keyboard Spec (KB)

Table 4-4 KB Spec Rules

Rule # Legend or group of legends

1-32 ASCII control characters (unused eaxcept for fixed spaces on kb_0)
33 variable space (non-printing character)

34-48 ASCII characters ! "#$ % & " () *+,-./

49-58 ASCII characters 0 through 9

59-65 ASCII characters : ; <=>? @

66-91 ASCII characters A through Z

92-97 ASCII characters [\ [~ _~

98-123 ASCII characters a through z

124-127 ASCII characters { | } ~

128 unused

129-137 Unique RWS keys (unused in current XPP revision)

138-160 unused

161 no break space
(Mapped to the unbreakable spaceband usb XyMacro on kb_0 only.)

162-256 International keys | £ ¥, etc.

257-288 unused

289 [Control] variable space
(Mapped to the unbreakable spaceband usb XyMacro on kb_0 only.)

290-304 [Control]] ASCII characters ! " #$ % & " () *+,-. /

305-314 [Control] ASCII characters 0 through 9

315-321 [Control]] ASCII characters : ; < =>? @

322-347 [Control] ASCII characters A through Z

348-353 [Control] ASCII characters [\]~ _*

354-379 [Control] ASCII characters a through z

380-383 [Control] ASCII characters { | } ~

384 unused

385-393 [Control] unique RWS keys (unused in current XPP revision)

394-416 unused

4-10 The Keyboard Map Spec (KB) Fonts

The Keyboard Spec (KB)

Table 4-4 KB Spec Rules (Continued)

Rule # Legend or group of legends

417 [Control] No break space

418-512 [Control] International keys | £ ¥, etc.

When editing a spec, you can go to a particular rule in the KB Spec by
selecting Search, Find Rule #, then specifying the number of the rule to which
you want to go.

Fonts The Keyboard Map Spec (KB) 4-11

Modifying KB Specs

Modifying KB Specs

All XCS numbers that are in the XCS Spec already have XyASCII escape
sequences and therefore have keyboard mapping pre-defined. This is true
even for the XCS numbers that are reserved for customer use (XCS numbers
1281-2134, which correspond to Unicode numbers xF0501-xF0856).

When Do I Need to Modify KB Specs?

Using KB Specs, you can set up alternate keyboards and map the following
to the key caps:

® Unicode numbers that you want to remap so they can be entered
using a different keystroke from a more accessible keyboard.
For example, you may want to use the star set in a dark circle as a
bullet. This symbol is on keyboard Z. Moving it to keyboard P
(Punctuation/Symbols) makes it easier to access in the XyView.

® Character strings. The string can consist of tags and XyMacros as well
as characters.
For example, you may want to be able enter your company slogan,
completely formatted, with one keystroke.

You can either customize existing KB Specs or create new KB Specs.
Creating a new KB Spec is useful if the characters you commonly enter in
divisions appear on various keyboards. You can create one keyboard and
edit it to include those characters. RWS recommends that you customize
keyboard 1, which is mapped to the [PI#/PI] and [Alt Keyboard] keys, and
is therefore easy to access. XPP delivers kb_1 as a duplicate of keyboard P
(kb_up), the Punctuation/Symbol Keyboard.

Note: Edits to KB Specs affect subsequently entered text, not text entered before
the edits. For example, if you change the character mapped to a particular key cap,
the new character does not appear in previously entered text; it appears in text
entered after the change.

Modifying an Existing KB Spec
To modify an existing KB Spec from PathFinder:

1. In the Tree View, expand Lsyslib and select Keyboard Maps from the
list of available style specs.

2. In the List View, right-click the KB Spec you want to modify and select
Edit from the pop-up menu.

Gau tion

Do not modify KB_0, the Standard keyboard!

4-12 The Keyboard Map Spec (KB) Fonts

Fonts

Modifying KB Specs

Having a hard copy of the KB Spec is often useful when entering characters.
However, because many rules in the KB Spec are not used, it is preferable to
print selected portions of the spec, rather than printing the entire spec.
(With the spec open in the XyView, select the portion of the spec you want
to print, and select File > Print > Selected from the Menu bar.)

Creating a New KB Spec
You may need to create a new KB Spec.

To create a new Keyboard Spec:

1. Navigate to STYLE LIBRARIES > Lsyslib > Keyboard Maps in the
PathFinder Tree View.
PathFinder displays the available Keyboard Maps in the List View.

2. Right-click template in the List view and select Copy from the pop-up
menu.
Note whether there are other copies of template already in Lsyslib so
you know which copy is yours. Any existing copies appear as
templateCOPY# where # is an integer.

3. Right-click Lsyslib in the Tree View and select Paste from the pop-up
menu.
PathFinder pastes a copy of the Keyboard Template to Lsyslib and
places the List View cursor on it.

4. Right-click your copy of template in the List View and select Rename.
The new name can be up to two characters, consisting of lowercase
letters or a number.

RWS reserves the right to deliver KB Specs 0, 1, 2, a-z, and ua-uz.

Therefore, RWS recommends that you copy your customized KB Specs
to the range 3-9. For example, kb_7.

Mapping a Character or a String to a Key Cap

You can map characters and character strings to the Unshift, Shift, Control,
and Control Shift positions of any key cap on any keyboard. For example,
on keyboard 0 (the standard keyboard) the [{usbl} XyMacro for an
unbreakable spaceband is mapped to the Ctrl Var Space (Var Space = space
bar) legend. Thus, when you press Ctrl + spacebar, you get a l{usbl]
XyMacro.

To map a character or a string of characters to a key cap:
1. Access an existing or new KB Spec, as previously described.

2. Go to the rule for the key cap on which you want to put the character
or string of characters. The Legend field contains a description of the
key cap.

The Keyboard Map Spec (KB) 4-13

Modifying KB Specs

The rules in the KB Spec are grouped by type of key cap. Press
[Search], then Find Rule # to specify a particular rule.

a. If you are mapping a single character to a key cap, enter the
Unicode number for the character you want to map to this key cap
and enter a description in the Description field.

b. If you are mapping a string of characters to a key cap, enter the
string in the Multi-to-one field and edit the Description field. The
Unicode number must be 0 for the Multi-to-one field to be used.

For example, if you wanted to map your company slogan to the
alternate keyboard, choose an open position on that keyboard and
enter, in the Multi-to One field, something like the following:

Ufe; 2N Ev; 3N size; 13NGrammy Lu

Creations{{ff; 6 Bl{fv;2Ml{size;11)—sewn with love just for you!

In your division, access the proper keyboard, enter the appropriate
keystroke (the keycap to which you mapped your slogan) and you
should see

Grammy Lu Creations—scwn with love just for you!

3. Repeat these steps to map additional characters to this keyboard.
4. Store the KB Spec.

You can now enter the character or string of characters by accessing the
keyboard and pressing the appropriate key. Refer toChapter 15 in the XML
\Professional Publisher: User Guide|for information on entering characters from
alternate keyboards.

Print a Keyboard Mapping

The Print Keyboard utility enables you to see your complete character set and
all the keyboard mappings. It creates a one page diagram of a keyboard.
This diagram is in a division that you can print for easy reference.

The first time you use the utility, you will be prompted to enter values for
the fonts used to output titles and labels on your keyboard map printout.
You need to specify these using the 5-digit FAST number. The choices you
make for printing Keyboards and XCS specs, such as title and label fonts,
extraction FASTSs, etc., are stored in xz /procs/util files kblib,
kbsetup, xcslib, and xcssetup, and retained for the next time the
utility is executed.

The Print Keyboard utility outputs character number data in Unicode hex.
You will also be prompted for extraction FASTs.

To print a keyboard:

1. Right-click the KB Spec you want to print and select Tools > Print

4-14 The Keyboard Map Spec (KB) Fonts

Fonts

Modifying KB Specs

Keyboard from the pop-up menu.
The Print Keyboard utility displays a Task Select list box with the

following options:

Option

Description

View Defaults

Displays a text box containing the following information:
FAST Library for KB layout

FAST for Labels

PI FAST for Labels

FAST for Extractions

PI FAST for Extractions

Displays a message: “Setup and Font Variant Files have
been updated.”

Repeats the same information for the FAST Library for
XCS Layouts.

Labels refer to the text, such as headings or character
labels, that make the keyboard diagram understandable.
Extractions refer to the font used to display the non-
alphanumeric characters.

Change Defaults ~ Allows you to change any of the default values for
FASTs or Pi FASTs for labels or the FASTs or Pi FASTS for
extractions for the KB layouts or the XCS layouts.

Refer to the figure at the end of this procedure.

Generate Generates the one page diagram of the selected keyboard

Layouts and places it in a division that you can view in the
XyView.

Exit Allows you to close the Task Select window and exit the

Print Keyboard utility.

. Select Generate Layouts and click the OK button.

The Keyboard/Character Font Maps area displays another set of

options:

Options Description

One or Multiple Displays a list box containing all the available

Keyboards keyboards. You can select one, or using the Control Key,
you can select multiple keyboards.

All Keyboards Processes all keyboards in the list box.

Character Set

Processes the Xyvision Character Set.

Previous Menu

Returns you to the menu that allows you to view or
change defaults, or generate layouts.

Exit

Closes the Task Select list box and exits the Print
Keyboard utility.

The Keyboard Map Spec (KB) 4-15

Modifying KB Specs

3.

Select one of the options listed above and click the OK button.

The Print Keyboard utility displays a message box detailing the
progress, “Processing Keyboard ... layout.” Then, it displays another
message box, “Keyboard layouts completed.”, and provides the exact

path to the division.

The divisions that are written out with the characters and keyboard
mappings are in the first Document Root Path in:
/CLS_xpputils/GRP_system/JOB_keyboards/DIV_keyboardname
Note: If you select “One or Multiple Keyboards”, the keyboard utility

displays a Keyboard Select list box, allowing you to select one or many

keyboards.

Click the OK button in the message box.

The Print Keyboard utility closes the message box and displays the
Task Select list box, allowing you to make another task selection, or

exit the utility.

The following figure is a sample keyboard displaying the changes to the
default values:

FAST and Pi FAST
for labels fwhich font
[ﬂeyh{)ard f a——— touse for labels)
Accent/Chars 1 FAST and Pi FAST for extractions e
Extraction FAST: 00030 with pi 10006 {which font to use for displaying o
Delault FAST: 00030 with pi 10000 available characters—different ascoos -
fonts may contain different - DATE: &/13/103
characters.)
i A A I it U 0 i i 0 0
5] a i & é i i i i o 5}
i T | ESY B TE B | Y | Y B £ CEN M (T8 B 2 T
A A L o] 4] ij 0 0
a a| |[e e || i ; o o[|6
— e S| 8 5 5 1 1 =] =1 I ey I
A .o b f f A | L E
il ® d a 1 i 1 o @
_ W T T [) e | T ED . i
Shill Lock A E 1 5 i H | K 1. i Enter
A A C E N I p o i
i a [= & fi i b &
— 1 e W [e e [T) I | —
SPACE
Figure 4-2 Sample Keyboard Displaying Default Values
Fonts

4-16 The Keyboard Map Spec (KB)

Updating KB Specs

Updating KB Specs

When you upgrade software, XPP delivers the latest KB Specs to

XYV_STYLES/xylibrary /Lsyslib, and does not overwrite the existing KB
Specs (except keyboard 0, which is always overwritten). This allows you to
continue to use your custom KB Specs, if you prefer.

Copying New Keyboard Specs

You can copy all new KB Specs in XYV_STYLES/xylibrary/Lsyslib directly
to XYV_STYLES/Lsyslib.

To copy KB Specs globally:

e Using Windows Explorer, copy all files named _kb_*.sde in
%XYV_STYLES%/xylibrary /Lsyslib to %XYV_STYLES%/Lsyslib.

e Using a DOS window, navigate to the %XYV_STYLES%/Lsyslib
directory and enter the following command:
copy %$XYV_STYLES%\xylibrary\Lsyslib_kb_*.sde .

e In UNIX, navigate to the XYV_STYLES/Lsyslib directory, and enter
the following command:
cp XYV_STYLES/xylibrary/Lsyslib/_kb_*.sde .

Note: In the above instructions, the asterisk (*) in the filename represents one or
more characters from the sets a-z, ua-uz, and 0-9.

Copying Individual KB Specs
If you want to copy individual KB Specs through PathFinder, you follow

the general procedure for copy specs. Refer to page 5-10 for information on
copying specs.

Fonts The Keyboard Map Spec (KB) 4-17

Updating KB Specs

4-18 The Keyboard Map Spec (KB) Fonts

Chapter 5

Font Libraries and Specs

This chapter contains information on the following topics:

e Font libraries

® Font specs

Fonts Font Libraries and Specs ~ 5-1

Managing Font Libraries

Managing Font Libraries

There are two basic types of libraries in XPP: style libraries and font
libraries. Style libraries are those libraries where style bundles, translation
tables, loose-leaf specs, CITI specs, and the like are stored. A font library
contains only font-related specs and machine-readable files.

A font library typically consists of three parts, all bearing the same root
name (e.g. noto) but having a different prefix: K, L, or X (as in Knoto, Lnoto,
and Xnoto). These library “parts” fall into two categories—source and
destination libraries.

Tip: RWS recommends keeping Lfontlib and Lstylelib separate, using base names
that clearly indicate the type of library.

Source and Destination Font Libraries

A source font library contains the editable font specs used to generate the
Font Access Tables (FASTs) and Kerning Pairs machine-readable files.

A source font library contains:

® Files necessary to create a FAST:
a. Phototypesetter (PTS) Specs and FAST Generation (FGS) Specs
(required)
b. Pseudofont (PSF) Specs and FAST Generation Exception (FGX)
Specs (optional)
® Other specs not used for producing FASTs:
a. Typesetter Font Map (TSF) Spec (required)
b. Kerning Pairs (KP) Specs (optional)
c. Font Variant (FV) Specs (optional)

Destination font libraries contain the machine-readable font files, called
FASTs, and the machine-readable Kerning Pairs (KP) data files needed for
composition, screen display, and output. Machine-readable files in the
destination libraries are not editable. FASTs are located in Xfontlib libraries,
while Kerning Pairs data files are in Kfontlib libraries.

A FAST contains character width and placement information that the
system needs for composition and output. GenFAST processes the source
font specs (PTS, FGS, PSF, FGX), and places the resulting FASTs in a
destination library. Similarly, when you store a Kerning Pairs Spec, the
system creates the destination Kerning Pairs library and places the
machine-readable Kerning Pairs data file there. Machine-readable FASTs
and Kerning Pairs data files vastly enhance XPP composition speed.

5-2 Font Libraries and Specs Fonts

Managing Font Libraries

Naming Font Libraries

XPP delivers a font library called noto. This library contains the font-width
specs for the delivered 163 Noto fonts.

Because RWS also provides the PostScript fonts for this set, these fonts can
be used immediately upon installation of your XPP system. Optionally, XPP
has a font library available called /npost, which contains font-width specs
for 1200 fonts. This is not, however, part of a standard delivery, and does
not include the corresponding PostScript fonts.

You may create your own font libraries, or use those provided with XPP.
RWS recommends that if you create a unique font library, you copy the noto
library (K, L, and X) as a base, and add to it or modify it to meet your
needs. This ensures at least minimal access to the delivered set of 163 fonts.

A valid library name consists of up to eight characters (not including the L,
K, or X prefix), consisting of uppercase and lowercase characters, symbols
(such as $ and &), and the digits 0-9. A library name must contain at least
one alphabetic character.

Do not end font library names with numbers unless you are using linked
numbered libraries, that is, you intend to use genfast to string multiple
Lfontlib# libraries together into a single Xfontlib. Genfast will drop any
numerical characters in the name of the generated output Xfontlib FAST
library (even if there is only one library named Lfontlib#).

When you rename a library in PathFinder, XPP automatically prepends K,
L, or X to the name. When creating a new font library, you can only create
the L version; the Kfontlib version is built as a post-process invoked when
you store out of a KP Spec; the Xfontlib version is generated when you
initiate GenFAST. Likewise, if you are creating a new library by using the
Build FAST utility, all three font library versions are created automatically.

Gau tion

Fonts

Do not delete or rename the noto font library.

Do I Need More Than One Font Library?

Ordinarily, there is no need for multiple font libraries. However, you may
need multiple font libraries if any of the following situations are true:

® You are working with dissimilar sets of fonts, either for different
publications or for different customers (in the case of commercial
typesetters), and you want to organize them in unique font libraries.

® You are customizing characters within a font for a given document,
but not for others.

® You are upgrading from an earlier XPP release and don’t want to mix
post, postuni and noto font libraries moving forward.

® You want to stop using Type 1 fonts and upgrade to a more advanced

Font Libraries and Specs ~ 5-3

Managing Font Libraries

font technology to take advantage of OpenType fonts and their greater
character coverage, language support, etc.

Font Libraries in PathFinder

Font libraries appear as Lfontlib, Xfontlib, or Kfontlib in the Tree View display
of STYLE LIBRARIES.

File System Location

XPP libraries are always located in a directory called sd_liz. The path to this
directory may vary, although typically it is located in an “XPP” (or similarly
named) folder, along with xz, the default jobs, and other delivered folders.
The path prefix may be determined or changed by doing one of the
following;:

® Using the Document Paths feature on the XyAdmin Tool (refer to the
XML Professional Publisher: Managing XPP| for information about the
XyAdmin Tool.)

e Using the XYV_STYLES environment variable from the command line:

e Linux: printenv | grep XYV_STYLES or echo $XYV_STYLES
e Windows: set XYV_STYLES

¢ Using the following sequence in Windows®:

Control Panel > System > Advanced system settings > Environment
Variables...

Select the XYV_STYLES entry in the System Variables list to display
the directory path for sd_liz in the value field.

Accessing Font Libraries

You access font libraries from the PathFinder Tree View under STYLE
LIBRARIES.

You can create a new library from the Menu bar.

® Select Tools > Create Library.
PathFinder displays Lnew in alphabetical order in the STYLE
LIBRARIES Tree View.

You can duplicate, delete, or rename a library.
1. Right-click the library name.

2. Select the appropriate task from the pop-up menu.

5-4 Font Libraries and Specs Fonts

Managing Font Libraries

You can create new font specs.
1. Right-click Lfontlib.
2. Select New from the pop-up menu.

3. Select the specific type of spec from the submenu.

Gaution Do not delete or rename the std-dict, std-fmt, std-tran, syslib, or noto libraries. These are
RWS-supplied libraries and must remain in the system and retain their original names.

Fonts Font Libraries and Specs ~ 5-5

Managing Font Specs

Managing Font Specs

All of the XPP font specs have individual purposes as well as being
dependent on each other to set quality type. The following table shows the
font spec names, their associated mnemonics, and a brief description of
each spec. The specs are listed in the order in which they are described in
this manual.

Table 5-1 Font Spec Names and Descriptions

Spec Mnemonic Description

Xyvision Character Set XCS Defines XCS numbers, named character entity
names, XyASCII escape sequences, and
Unicode values for characters.

Keyboard KB Assigns characters to positions based on their
XyASCII escape sequences.

Phototypesetter PTS Contains information for every character in a
particular font.

Pseudofont (optional) PSF Modifies output of one or more characters.
Also for combining existing characters to
create a new character.

FAST Generation FGS Groups characters from one or more fonts into
a FAST (Font Access Table).

FAST Generation FGX Includes characters that would otherwise not

Exception (optional) be in the FAST.

PostScript Name PSN Maps PostScript character names to Unicode
numbers.

Viewable FAST VEX Viewable version of a FAST.

Font Variant FV Maps font families and variants to FASTs.

Typesetter Font Map TSF Maps the font FAST number in the PTS Spec

to the PostScript font name and assigns an
encoding table name or CMAP file name as
well as CSS font property names.

Kerning Pair KP Defines kerning between specified characters.
(optional)

Ligature/Accent RP Replaces specified input characters with
Replacement ligatures and/or accents.

5-6 Font Libraries and Specs Fonts

Managing Font Specs

Naming Font Specs

How you name specs depends on whether you are working through the
command line or through PathFinder.

® Through the Command Line—Use the spec name, such as FGS, FV,
PSN in lowercase letters, preceded and followed by an underbar, then
by a name consisting of no more than eight (8) alphanumeric
characters, and the suffix .sde, for example, _fgs_00001.sde.

® Through PathFinder—It is only necessary to use the name of no more
than eight (8) alphanumeric characters, for example, 00001. PathFinder
does not display the prefix, suffix, or the underbar.

The following table displays the naming conventions for the font specs and
files, and provides examples.

Table 5-2 Naming Conventions for Font Specs and Files

PathFinder Spec Spec Parameters Example

Categories Mnemonic

Xyvision XCS The only valid name is _xcs_default.sde

Character Set “default”

Keyboard Maps KB Up to two alphabetic or _kb_2.sde
numeric characters _kb_a.sde

_kb_ua.sde

Phototypesetter PTS Up to 7 alphanumeric _pts_00003.sde

Specs characters

Pseudofonts PSF Up to 7 alphanumeric _psf_math.sde

characters; do not use the
same name as a PTS Spec (or,

append “ps” to the end) _psf_00003ps.sde
FAST Generation FGS Five-digit number between _fgs_00236.sde
00001 and 65535
FAST Generation FGX The same name as the _fgx_00236.sde
Exceptions corresponding FGS Spec
PostScript Names ~ PSN The delivered names are
“ps2xcs” _psn_ps2xcs.sde
“custom” _psn_custom.sde
“unicode” _psn_unicode.sde
FASTs FX Machine-readable file. The fx_00236
same name as the Located only
corresponding FGS spec in Xfontlib.

(system-assigned)

Fonts Font Libraries and Specs ~ 5-7

Managing Font Specs

Table 5-2 Naming Conventions for Font Specs and
Files (Continued)

PathFinder Spec Spec Parameters Example
Categories Mnemonic
Font Variants FV Up to 7 alphanumeric _fv_doc.sde
characters
Typesetter Font TSF The only valid name is _tsf_system.sde
Maps “system”
Kerning Pairs KP Up to 8 alphanumeric _kp_00001.sde
characters _kp_timesrom.sde
Located only
in Lfontlib.
Kerning Data KP Machine-readable file. Up to _kp_00630.x
8 alphanumeric characters Located only
in Kfontlib.
Ligature/Accent RP The only valid name is “sys” _rp_sys.sde
Replacement

Accessing Font Specs

Access font specs in PathFinder just as you would any other spec:

1. Navigate to STYLE LIBRARIES > Lfontlib and select the desired spec
type. Pathfinder displays the the specs in the List View.

2. From the List View, right-click the specific spec and select the task you
want to perform from the pop-up menu.
Double-click the spec.
XPP opens the spec in the Sdeditor in edit mode.

Note: Refer to Table 5-3 to determine which spec category you should select for the
particular kind of spec you want to access.

5-8 Font Libraries and Specs Fonts

Fonts

When to Edit Font Specs

Managing Font Specs

The following table lists the specs and when you should edit them. Run
GenFAST after editing a PTS, PSE, FGS, or FGX Spec for the changes to take

effect.

Table 5-3 When to Edit the Font Specs

Spec Mnemonic When to Edit

Xyvision Character Spec ~ XCS Does not usually need to be edited

Keyboard Spec KB Does not usually need to be edited

Phototypesetter PTS To set up or add fonts

Pseudofont (optional) PSF To modify the output of characters

FAST Generation FGS To add characters from one or more fonts
to a FAST

FAST Generation FGX To add an exception character(s) to a FAST

Exception (optional)

Font Variant Fv To set up or add fonts

Typesetter Font Map (not TSF To map font numbers to additional

always necessary) information or adjust the values for
CSS-related fields

Kerning Pairs (optional) ~ KP To specify spacing between characters

Ligature/Accent RP Does not usually need to be edited

Replacement (optional)

NOTE: FAST specs (FX, VFX, and VPX) are not edited. See Chapter 9, “Creating & Viewing

FAST Specs”.

Font Libraries and Specs ~ 5-9

Managing Font Specs

Copying Font Specs through PathFinder

When you copy a font spec you are, in effect, creating a new one, but a new
one identical to the one you just copied.

Copying a Spec to the Same Library

To copy a spec to the same library:

1. Navigate to STYLE LIBRARIES > Lfontlib and select the desired spec
type.
Pathfinder displays the the specs in the List View.

2. Right-click the spec you want to copy and select Copy.
XPP copies the selected spec and places it in the buffer.

3. Right-click Lfontib in the Tree View and select Paste.
XPP does the following:

® Adds the copied spec to the appropriate spec type in the ListView
at the appropriate alphabetical location.

® Gives it the name XXXCopyl, where XXX is the name of the
original spec.

® Positions the List View cursor on the newly copied spec.
4. Right-click the name of the newly copied spec to change its name.
XPP highlights the spec name and displays a pop-up menu.
5. Select Rename from the pop-up menu.
XPP places a frame around the file name and prepares it for editing.
6. Type a new file name following the naming conventions for a new
spec.
7. Press the Enter key when you are finished renaming the file.

XPP places the new file name in the appropriate alphabetical order.

Copying a Spec to a New Library

Copying a Spec to a new library follows the same procedure as copying a
spec to the same library. The only difference is in step 3 in the previous
section. In this case, you right-click the new Lfontlib to which you want to
paste the spec. If the spec type container does not exist in that library,
PathFinder creates it before pasting the spec. Since this is the only spec with
that name, there is no copy1 affixed to the spec name. If there is already a
spec by the same name in the new location, PathFinder informs you and
asks if you wish to overwrite the file.

5-10 Font Libraries and Specs Fonts

Fonts

Managing Font Specs

Field Notation

Some of the fields in the PTS, PSF, and FGX Specs accept decimal,
hexadecimal, or octal values. When entering values in these fields, the value
is preceded by a letter denoting the notation, for example, d for decimal, x
for hexadecimal, or o for octal. Do not place a spaceband between the
notation and the number.

Changing Field Notation

You can change the display in the fields to decimal, hexadecimal, or octal
notation.

To change the notation in which a field is displayed while editing or
viewing a spec:

1. Place the cursor in the field and press Menu > Display on the Softkey
menu (or use the Display key).
The system displays the Display Control menu with the See Octal, See
Decimal, and See Hex options.

2. Select the notation in which you want to display the field.
All fields of that type change to the new notation; fields of other types
do not change.

Using Field Notation

Below is some helpful information to keep in mind when using decimal,
hexadecimal, and octal display:

® The default notation for the spec fields is decimal. For example, if you
are editing a new spec and have not changed the notation, the default
values are in decimal. If you enter a value without a preceding
notation, the system assumes that the field is in decimal notation and
inserts a preceding d.

® The spec fields retain the notation from the last time you edited and
stored the spec. For example, if the fields were in octal display the last
time you stored the spec, they will be in octal display the next time
you open the spec.

® You can enter values in different notations within a table. For example,
in the PTS spec, the PTS Code field in one rule can be in decimal
notation, and the PTS Code in another rule can be in hexadecimal
notation.

Once you change the notation for that field, all fields of that type will
be in the specified notation.

® You can mix notations within a rule. For example, in the PTS Spec, the
PTS Code and Unicode Number fields can have different notations.

e If you change the notation display and enter a value without a

Font Libraries and Specs ~ 5-11

Managing Font Specs

preceding d, x, or o, the system assumes that a field is in the notation
you specified. When you exit the field, the system automatically
inserts the appropriate preceding notation.

® You cannot enter a hexadecimal value without the appropriate
preceding notation. For example, you cannot exit the field if you enter
2D0 without a preceding x.

Header and Rule Fields

The header fields in the PTS, PSF, and FGS Specs contain global entries
which apply to the majority of the characters described in the specs. Some
header fields have corresponding rule fields that you can use to override
the entries in the header fields.

Editing Spec Fields
Below is helpful information for editing the fields in a font spec:

® Fields that accept values in decimal, octal, and hexadecimal default to
dO, 00, or x0 depending on the notation currently in use.

¢ In fields that accept hyphens, the hyphen indicates that the entry in
the corresponding header field will be used.

® Rule field entries are only in effect for that rule. Subsequent rules do
not inherit field entries from previous rules.

Overriding PTS, PSE, and FGS Header Fields

The following table shows the header fields that can be overridden and the
corresponding rule fields you can use to override the header field.

Table 5-4 Overriding Spec Header Fields

Spec Owverride this header field ... with this rule field ...

PTS Typesetter Information:

Style Code CHARACTER OVERRIDES STYLE CODE
Slant CHARACTER OVERRIDES SLNT
Slant FONT SLNT (in FGX Spec)

PSF Style code Style Code

FGS Style Code Exact Match Style Code Overrides

5-12 Font Libraries and Specs Fonts

Chapter 6

The Phototypesetter Spec
(PTS)

This chapter contains the following information:

¢ Understanding the PTS Spec
® Setting up PTS Specs

Fonts The Phototypesetter Spec (PTS) 6-1

Understanding the PTS Spec

Understanding the PTS Spec

A Phototypesetter (PTS) Spec maps each glyph in a font to a Unicode
number and provides information on the glyph width, style, and so on.

The GenFAST program uses this information, along with information from
other specs, to create a Font Access Table Spec (FAST) consisting of glyphs
from one or more fonts.

The Build FAST utility creates the PTS Spec from information in the font’s
AFM (Adobe Font Metrics) file, which is provided separately by the font
vendor for Type 1 base and Type 1 CID fonts. This information includes the
character code and character name or character ID (CID). XPP uses the
character names or CIDs in the AFM file to map to the appropriate Unicode
numbers.

For OpenType fonts, when Font Copy has been performed on the font it
creates the separate AFM file in the XYV_EXECS/psres/fonts/
fontname. font folder. When using Build FAST, the user can select this
generated AFM file or for OTF fonts, Build FAST can extract the metric data
directly from the OTF file if it is selected instead of the AFM file.

Accessing PTS Specs

You access PTS Specs from PathFinder, using the following sequence:
STYLE LIBRARIES > Lfontlib library > Phototypesetter Spec.

Delivered PTS Specs

XPP delivers PTS Specs for the delivered Google Noto fonts to the Lnoto
font library.

AFM Files

Adobe Font Metrics (AFM) files are separately provided by the PostScript
font vendors for Type 1 base and Type 1 CID fonts — one AFM file for each
PostScript font. Font Copy generates the AFM files for OpenType fonts.
AFM filenames for Type 1 and OpenType fonts generally reflect the
PostScript font name and have a ”.afm” filename extension. AFM filenames
for Type 1 CID fonts have various filenames and generally do not have any
filename extension or might have a ”.cid” filename extension.

6-2 The Phototypesetter Spec (PTS) Fonts

Understanding the PTS Spec

AFM files are ASCII files and are therefore easy to view and print. They
contain several types of information that is useful for setting up font specs:

® The unique PostScript font name
¢ The number of glyphs in the font

® The access (encoding) code, width, and name or character ID (CID) for
each glyph
® Optionally, kerning pair definitions (See “The Kerning Pairs Spec

(KP),” for more information.)

The unique PostScript font name is located near the top of file on the
“FontName” line (not the “FullName” or “Family Name” lines).

For example: FontName NotoSerif-Regular

The “StartCharMetrics” line specifies the number of glyphs in the font.
For example: StartCharMetrics 3255

The following figure shows a single line of glyph information from an
OpenType AFM file and explains how to interpret the information. The
glyph width is based on 1,000 units per em.

C 33 ; WX 332 ; Nexclam ; B 0O 0 0 0 ; UNX 0021 ;

the character access code is 33

its width is 332

its PostScript character code is exclam

bounding box information - not needed to set up XyVision font specs

its hexidecimal Unicode value is 0021

Figure 6-1 AFM File Glyph Information

Kerning Data

The AFM file contains kerning data for each glyph, such as the following
for the NotoSerif-Regular font:

StartKernData
StartKernPairs 51456
KPX U+0022 U+0041 -80
KPX U+0022 U+0063 -20
KPX U+0022 U+0064 -20

Fonts The Phototypesetter Spec (PTS) 6-3

Understanding the PTS Spec

KPX U+0022 U+0065 -20
KPX U+0022 U+0067 -40
KPX U+0022 U+006f -20

OTF Files

For OpenType CFF fonts (.otf), metric information can be extracted directly
from the OTF file to a temporary file during Build FAST, then deleted,
rather than using the AFM file during Build FAST.

The Relationship Between PTS Spec and PSN Spec for
Type 1 Fonts

When using Build FAST to create the PTS Spec for a Type 1 font, it will also
use information located in the PSN (PostScript Name) Specs. The PSN Specs
are not used for OpenType Unicode fonts. Two PSN Specs are delivered
with the system. These PSN Specs map standard glyph names to Unicode
numbers. If a glyph name is not recognized, you may customize a PSN
Spec, adding glyph names and assigning them to Unicode numbers.

Naming a PTS Spec

A PTS Spec name consists of _pts_ followed by up to eight alphanumeric
characters, for example, _pts_00001.sde. Build FAST automatically names
the PTS Spec after the FAST number specified in the Build FAST dialog box.
Thus, if the FAST is 5001, the PTS Spec will be pts_05001.

Note: When running Build FAST, you can think of PTS and FAST names as
basically the same. But, when you run GenFAST to create the actual FAST, it is the
FGS name that ultimately determines a FAST's name. For text fonts, all three will
usually be the same, but Pi FASTs usually combine glyphs from numerous PTS
Specs, and the FAST name might not correspond to any of the PTS names.

For a FAST, a PTS Spec cannot have the exact name as a PSF Spec
(Pseudofonts Spec). If the PTS and PSF Spec names are identical, GenFAST
does not know which type of spec to use — PTS or PSF. A PSF Spec
typically has the same name as a PTS Spec with ps appended to the end, for
example, 05001ps. For additional information on the refer to page
7-1.

6-4 The Phototypesetter Spec (PTS) Fonts

Font Name

Fonts

Understanding the PTS Spec

Structure of a PTS Spec

A PTS Spec consists of a File Comment field and one table with the following

sections:

e Header — contains a Table Comment field and Typesetter Information section
containing default information defining the majority of the glyphs in

the font.

® Rules — contain information about each glyph in the font. Some
information in the rules overrides information in the header fields.
There is one rule for each glyph in the font.

The following figure shows the structure of the PTS Spec.

=l x|

File Edit View Insert Select Help

File Comment |Pustscript EUAlbertina-Regular

LL-

~Table Comment |Created Thu Feb 27 13:23:34 2003

Font Hame IilUﬂlhertina—Regular
Typesetter Information
Font Map Number W Units IW Style Code Isrm—
Slant of f + Range Min Ilq_ Range Max W
CHAR UMICODE CHaR CHARACTER OUVERRIDES
LCODE MUMBER WIDTH STYLE CODE SLNT COMMENT
d3Z d3z dZ00 - 4[|CID 1
d33 d33 dZ41 - 3CID 2
d34 d34 d3Z0 - 4[|CID 3
d35 d35 d642 - 3 CID 4
d36 d36 d475 - 3CID 5
£
Ins Comment Field Tahle @ of 1 Rule 1 of 1689 Fld 1

Figure 6-2 Phototypesetter Spec

Header Fields

The entries in the header fields are global entries for the spec; you can
override entries in these fields if there is a corresponding rule field.

The name of the font.

Entry

Description

string

As many as 70 alphanumeric characters, including uppercase
and lowercase characters, symbols (such as $, &, and /) and
the integers 0-9.

The Phototypesetter Spec (PTS) 6-5

Understanding the PTS Spec

Font Map Number

Slant

Uses number of FAST from Build FAST utility.

PostScript fonts do not usually have numbers already assigned to them,
except for the set of Noto fonts delivered with XPP and the delivered noto
font library. Use your own numbering scheme. To avoid conflicting with
numbers that XPP has already assigned to PostScript fonts, use numbers
above 5000 if using the delivered noto font library. For instance, start with
_pts_05001.sde and work up.

The Font Map Number is the same number as the one in the Font Map No. field of
the TSF Spec. For information on the TSF Spec, refer to|“The Typesetter|
[Font Map Spec (TSF)”|on page 13-1.

The Font Map Number assigns a number to the font’s PostScript name
because the composition component of XPP can only read numbers,
whereas the display and output components need to read a PostScript
name.

Note: There is no relationship between the Font number and the Font Family/
Variant numbers. Within a division, fonts are accessed by family/variant number.
These, in turn, are mapped to the Font Number (FAST), which is then mapped to a
PostScript font name via the TSF Spec.

Entry Description

integer A positive integer in the range of 0 through 32767. This field
entry defaults to 0.

This field controls the amount of electronic slant applied to glyphs and is
useful if an italic version is not available . For example, if you purchased
roman, italic, and bold versions of a font but not bold italic, you could slant
the bold font to simulate bold italic.

Electronic slant is usually available on PostScript output devices.

You can slant roman glyphs; you can also give italic glyphs more slant.
Slanting the glyphs using this field slants all the glyphs, including bullets,
periods, and so on.

Enter the amount that you want to slant the glyphs. Do not enter a unit
qualifier; the unit is degrees. Override this field with the PTS Slant rule field.

The entries 9 and 14 are commonly used degrees of slant; if you are unsure
of the amount of slant you want, try these entries first.

6-6 The Phototypesetter Spec (PTS) Fonts

Units

Range Min

Range Max

Fonts

Understanding the PTS Spec

Entry Description

integer An integer in the range of —45 through 45. The unit is
degrees. Negative values slant glyphs to the left; positive
values slant glyphs to the right.

off Specifies no slant (default). This value is available with Prev
Choice, Next Choice.

0 Specifies no slant. An entry of 0 changes to off when you exit
the field.

9 Specifies 9 degrees of slant. This value is available with Prev
Choice, Next Choice.

14 Specifies 14 degrees of slant. This value is available with Prev

Choice, Next Choice.

PostScript width values are specified relative to 1000 units per em.

Entry

Description

integer

An integer in the range of 1 through 65535. This field entry
defaults to 1000.

The smallest point size for outputting any glyph in this font.

Entry

Description

number

A positive numeric value, followed by a valid unit qualifier,
in the range of 0 through 186.1q or the equivalent in p, i, m,
n, ¢, d, k units. This field entry defaults to 1q, however, the
minimum point size the system can output is 4.5q.
(Technically, you can specify a smaller point size, but some
things having to do with pickup placement and/or leading
may not work properly.)

The largest point size for outputting any glyph in this font.

Entry

Description

number

A positive numeric value, followed by a valid unit qualifier,
in the range of 0 through 186.1q or the equivalent in p, i, m,
n, ¢, d, k units. The maximum point size of 186.1 points is the
result of 16-bit values, which are used in XPP, and is the
maximum point size the system can output. This field entry
defaults to 186.1q.

The Phototypesetter Spec (PTS) 6-7

Understanding the PTS Spec

Style Code

This field is relevant for Pi fonts. It describes the majority of the glyphs in
the font. Consider the following questions when assigning style codes:

e Js this a serif or a sans serif font?
® s this a roman or an italic font?

e What is the weight of the glyphs in the font?

Assign a style code that describes the majority of the glyphs in the font,
then, if necessary, enter exception style codes in the PTS Character Style Code
rule fields.

You may need to change a style code if either one of the following
situations is true:

® You are using a font that contains the same characters in multiple
variations, for example, a bold glyph and a medium glyph.

® You are using XPP to set math, particularly in pre-7.x revisions,
whereby GenFAST generated special FASTs. For example, in a math
equation, you might enter a standard alphanumeric characters, but
want to output a lower case italic glyph without having to change the
font variant. This type of math font environment is still valid in XPP.

Other than these two situations, there should be little need to change a style
code when using text fonts.

There is a relationship between the style code entered in the PTS Spec and
the style code specified in the FGS Spec; this is explained in more detail in
the chapter about the FGS Spec.

Use only the valid entries described below; spacebands or underbars are
not valid characters. The system does not check for invalid codes when you
exit this field, however, you cannot successfully run GenFAST if this field
contains an invalid code.

Use the PTS Character Style Code rule field to override this field for exceptions
to this style code.

Entry Description

no entry If this field is blank (default), the GenFAST program uses the
rule field entry. If both this field and the rule field are blank,
GenFAST does not pick up any glyphs from this spec.

s serif
n sans serif
i italic (slanted; oblique)

6-8 The Phototypesetter Spec (PTS) Fonts

Char Code

Fonts

Understanding the PTS Spec

Entry Description

r roman (upright)

e extra light; describes the glyph weight
1 light; describes the glyph weight

medium; describes the glyph weight

bold; describes the glyph weight

5T |8

heavy; describes the glyph weight

extra bold; describes the glyph weight

inferior; describes a typeface used to set inferior text

u superior; describes a typeface used to set superior text

c small caps; describes small cap glyph

o other; a characteristic not represented by any other style code
in this list. This code is undefined until you determine the
meaning. For example, you have a font with a particular
characteristic (e.g., an outline font). You could set a standard
in your shop that style code o stands for that characteristic.

a all attributes; the same as individually entering all the
attribute codes listed

! This style code is often used for Pi glyphs that can be used with any style text font.

For example, if you have a Pi font containing serif medium glyphs with a
few serif bold glyphs, enter snirelmbxh in the Style Code field. In the rules in
the PTS Spec for the serif bold glyphs, enter snirbxh in the Style Code field of
those rules. In the rules in the PTS Spec for the serif medium glyphs, enter
snirmel in the Style Code field of those rules.

Rule Fields

The PTS Spec contains a rule for each glyph in the font. Fields that accept
values in decimal, octal, and hexadecimal default to d0, 00, or x0 depending
on the notation currently in use.

A hyphen in the Slant rule fields indicates that the entry in the
corresponding header field is being used.

The character/access code for the glyph preceded by a letter denoting the
notation. For non-CID fonts, use the .afm file “C” value as the entry for the
Char Code field.

Entry Description

dinteger A positive decimal integer in the range of d0 through d32767.

The Phototypesetter Spec (PTS) 6-9

Understanding the PTS Spec

Entry Description

ointeger A positive base 8 (octal) integer in the range of 00 through
077777.

xinteger A positive base 16 (hexadecimal) integer in the range of x0
through x7FFF.

0 Use this entry for spacebands, em spaces, en spaces, and so

on. For more information on these characters, refer to the
description of the Character Width field.

Unicode Number

Enter the Unicode number assigned to this glyph.

When using the Build FAST utility for Type 1 fonts, XPP uses the PostScript
Name (PSN) Specs to match the glyph name to the appropriate Unicode
number.

Unicode numbers xF0501 through xF0856 are reserved for user-defined
characters, such as company logos and pseudo characters.

Be careful when entering the same Unicode number more than once—it
may not give you the results you expected. GenFAST puts only one of the
glyphs with the same Unicode number into the FAST. For more information
on how GenFAST processes Unicode numbers, refer to “Creating & Viewing|
FAST Specs”|on page 11-1.

Character Width

This is the width of the glyph based on 1,000 units per em. Do not enter 0 in
this field; glyphs must have a width of at least one unit.

The font vendor provides the glyph width information, usually in the .afm
tile. The Build FAST utility automatically populates the PTS Spec with the
following entries for Type 1 fonts.

Unicode Char .
Char. No. Code Width
unit space x200A 0 units per em divided by 100, rounded to

the nearest integer. (For example, 10 for
1000-unit PostScript devices.)

figure space x2007 0 width of the number 2
thin space x2009 0 width of a period

en space x2002 0 width of an en dash
em space x2003 0 width of an em dash
apostrophe x27 d39 width of a close quote

6-10 The Phototypesetter Spec (PTS) Fonts

Style Code

Slant

Comment

Fonts

Understanding the PTS Spec

Enter a style code to give this glyph a different style from that defined in
the header field. Rules defining Pi glyphs typically have an entry in this
field.

Leave this field blank if the style in the Style Code header field adequately
describes this glyph. For text fonts, you would typically leave this field
blank and define the style code in the header field.

You may have several variants of one Pi character available in one Pi font
(e.g., serif, sans serif, bold, medium). Create one rule for each variant the
font has for the Pi character (each rule has the same Unicode number).
Enter the appropriate PTS codes, glyph widths, and style codes for each of
the variants. The results depend on how you set up the FGS Specs for
running GenFAST. For more information, refer to “Setting up FGS Specs”
on page 9-4.

The valid entries are the same as for the Style Code field on page 6-8 in the
PTS Spec Typesetter Information Header Fields section.

Enter a value to slant the glyph defined in this rule by a different amount
than defined in the Slant field in the Typesetter Information section of the
header. This field overrides the Slant field in the Typesetter Information
section of the header.

The valid entries are the same as for the Slant field on page 6-6 in the PTS
Spec Typesetter Information Fields section.

A comment that describes the glyph accessed by this rule. For Type 1 fonts,
this information may be derived from the PSN Spec.

The Phototypesetter Spec (PTS) 6-11

Understanding the PTS Spec

6-12 The Phototypesetter Spec (PTS) Fonts

Chapter 7

The Pseudofont Spec (PSF)

This chapter contains the following information on the Pseudofont (PSF)
Spec:

¢ Understanding the PSF Spec
® Setting up PSF Specs

e Examples of defining pseudo characters

Fonts The Pseudofont Spec (PSF) 7-1

Understanding the PSF Spec

Understanding the PSF Spec

A Pseudofont (PSF) Spec allows you to send commands directly to the
output device to modify glyph placement and/or appearance. Modifying
glyphs on output also affects screen display.

For example, in large point sizes, the open parenthesis looks too wide. You
can define the open parenthesis in the PSF Spec and modify its width.

Using a PSF Spec, you can:

e Modify the height, width, or placement (both horizontal and vertical)
of a glyph.

® [ssue typesetter direct commands that affect the output of glyphs (e.g.,
reverse video).

e Combine glyphs from one or more PostScript fonts to form a single
character.

Once you have included a PSF Spec in a Font Access Table (FAST), you can

use those characters for display and output as you can use any other
characters.

Accessing PSF Specs

You access PSF Specs from PathFinder, using the following sequences:
STYLE Libraries > Lfontlib > Pseudofonts

7-2 The Pseudofont Spec (PSF) Fonts

Setting Up PSF Specs

Setting Up PSF Specs

Before editing a PSF Spec, gather the following information:

® PTS codes, Unicode numbers, and glyph widths of the glyphs you
want to use or modify.

® Unicode numbers — decide which custom or standard Unicode
numbers you want to assign to the pseudo characters.

Naming a PSF Spec

If you are creating a PSF Spec, assign a name to it that consists of the _psf
prefix followed by a name of up to eight alphanumeric characters. Do not
give PSF and PTS Specs identical names; otherwise, GenFAST does not
know which type of spec to use — PTS or PSE.

PTS and PSF Specs are typically named similarly, but PSF Spec names are
typically followed by ps — for example, _psf_05001ps.sde. This
distinguishes it from _pts_05001.sde when running GenFAST.

Structure of a PSF Spec

A PSF Spec consists of a File Comment field and one table with the following
sections:

e Header — contains a Table Comment field and a Typesetter Information
section containing default information that defines the majority of the
pseudo characters in the file.

® Rules — contain information about each pseudo character that is being
used on output. There is one rule for each pseudo character.

Fonts The Pseudofont Spec (PSF) 7-3

Setting Up PSF Specs

The following figure shows the structure of the PSF Spec.
-Inix]

File Edit View Insert Select Help

File Cummentl 2

Tahle Comment |

Font Name ﬁalatinufltalic
Style Code |sim Units 1000

Range Hin |1q
Range Max |[1864q

|jnir_‘nde Numher |[d64256 Char Width |d491 Style Code |
c

ummands|<cf;26)(102)(mh;—65)(102)
omment |ff ligature; f=278

I:Erlil.‘,l:ide Numher |[d64259 Char Width |d?04 Style Code |
C

nmmﬂnds|<cf;2&)(102)<mh;—ﬁE)(lﬂZ)(mh;—ﬁE)(lﬂS)
omment [Ffi ligature; i=278

|:Eni[:l:lclla Number |d64Z60 Char UWidth Id?ﬂd Style Code I
c

ummands|<cf;26)(102)<mh;765)<102><mh;765)<103>
omment [Ff1 ligature; 1=278

Ins Comment Field Tahle 0 of 1 Rule 1 of 3 Fld 1

Select a menu option

Figure 7-1 Pseudofont Spec

Header Fields

The entries in the header fields are global entries for the spec; you can
override entries in these fields if there is a corresponding rule field.

These fields control the appearance of typeset pseudo characters.

Font Name
Enter a name that describes the pseudo characters in the pseudofont, for
example, pseudomath; or, enter just the name of the font for which you are
creating pseudo characters, for example, Garamond Bold.
Entry Description
string As many as 70 alphanumeric characters, including uppercase
and lowercase characters, spaces, symbols (such as $, &, and
/), and the integers 0-9.
Style Code

This field is relevant for Pi fonts. It describes the majority of the pseudo
characters in the font. Consider the following questions when assigning
style codes:

® Js this for a serif or a sans serif FAST?
® s this for a roman or an italic FAST?

e What is the weight of the pseudo characters or the target FAST?

7-4 The Pseudofont Spec (PSF) Fonts

Setting Up PSF Specs

Assign a style code that describes the majority of the glyphs in the font,
then, if necessary, enter exception style codes in the PSF Character Style Code
rule fields.

Use only the valid entries described below; spacebands or underbars are
not valid characters. The system does not check for invalid codes when you
exit this field, however, you cannot successfully run GenFAST if this field
contains an invalid code.

Use the PSF Character Style Code rule field to override this field for exceptions
to this style code.

Entry Description

no entry If this field is blank (default), the GenFAST program uses the
rule field entry. If both this field and the rule field are blank,
GenFAST does not pick up any pseudo characters from this

spec.

s serif

n sans serif

i italic (slanted; oblique)

r roman (upright)

e extra light; describes the pseudo character weight

1 light; describes the pseudo character weight

m medium; describes the pseudo character weight

b bold; describes the pseudo character weight

h heavy; describes the pseudo character weight
extra bold; describes the pseudo character weight
inferior; describes a typeface used to set inferior text

u superior; describes a typeface used to set superior text

c small caps; describes small cap character

0 other; a characteristic not represented by any other style code
in this list. This code is undefined until you determine the
meaning. For example, you have a font with a particular
characteristic (e.g., an outline font). You could set a standard
in your shop that style code o stands for that characteristic.

al all attributes; the same as individually entering all the

attribute codes listed

! This style code is often used for Pi glyphs that can be used with any style text font.

Fonts The Pseudofont Spec (PSF) 7-5

Setting Up PSF Specs

Units

Range Min

Range Max

For example, if you have a Pi font containing serif medium glyphs with a
few serif bold glyphs, do the following:

e Enter snirelmbxh in the Style Code field.

® In the rules in the PSF Spec for the serif bold pseudo characters, enter
snirbxh in the Style Code field.

® In the rules in the PSF Spec for the serif medium pseudo characters,
enter snirmel in the Style Code field.

PostScript width values are specified relative to 1000 unit per em.

Entry Description
integer An integer in the range of 1 through 65535. This field entry
defaults to 1000.

The smallest point size for outputting any pseudo character in this font.

Entry Description

number A positive numeric value, followed by a valid unit qualifier,
in the range of 0 through 186.1q or the equivalent in p, i, m,
n, ¢, d, k units. The minimum point size of 4.5q. (Technically,
you can specify a smaller point size, but some things having
to do with pickup placement and/or leading may not work
properly.) This field entry defaults to 1q.

The largest point size for outputting any pseudo character in this font.

Entry Description

number A positive numeric value, followed by a valid unit qualifier,
in the range of 0 through 186.1q or the equivalent in p, i, m,
n, ¢, d, k units. This field entry defaults to 186.1q.
The maximum point size the system can output is 186.1q,
which is a result of using 16-bit programming in XPP.

Rule Fields

The PSF Spec contains a rule for each pseudo character that is being used
on output. The rule fields contain information specific to the particular
pseudo character. Fields that accept values in decimal, octal, and
hexadecimal default to d0, 00, or x0 depending on the notation currently in
use.

7-6 The Pseudofont Spec (PSF) Fonts

Setting Up PSF Specs

Unicode Number

The Unicode number may be the same as in the PTS Spec you are using, or
different if you are combining multiple glyphs. See examples below for
details.

Character Width

Style Code

Commands

Comment

Fonts

The pseudo character width follows a formula:

CharWidth = original width of glyph
+ <mh> commands
X <sw> commands

See Commands section.

The valid entries are the same as those described on page 6-8 for Style Code
under PTS Spec Header Fields for the Phototypesetter Spec.

The command must include the character access code as well as all
commands to modify it. The commands and PTS codes are defined within
angle brackets. Use the less than (<) and greater than (>) keycaps to access
these angle brackets. These commands use relative moves and point sizes.
This enables them to work well at various point sizes.

Note: The glyphs you want to modify in the Pseudofont Spec need to be expressed
by their encoding values, therefore, the PTS code you enter in the Commands field is
the value in the Char Code field of the PTS spec and not the Unicode number.

The font vendor does not supply information about the amount of space
around the glyphs. When modifying a glyph, it may take several attempts
to place the glyph as desired.

Use these commands in this field only. They are not XyMacros; do not use
them in divisions.

Entry Description

string Command(s) and PTS code(s) defining the pseudo character;
as long as 7%2 lines (512 characters). Open angle brackets ((),
close angle brackets (), and semicolons are counted as
characters. Refer to the following table for descriptions of the
valid commands.

Describes the character.

The Pseudofont Spec (PSF) 7-7

Setting Up PSF Specs

Pseudofont Commands

The following table explains commands that are only used with the
Pseudofont Spec.

Table 7-1 Pseudofont Commands

Command

Description

(mb;10)*

Moves the baseline by a percentage of the current font height
(including any prior font height changes made in the same
pseudofont character definition). Enter the percentage as the
argument. Positive arguments move the baseline up; negative
arguments move the baseline down.

Reset the baseline with an (mb) command at the end of the command
string, with the opposite value for the argument (as long as no <sh>
commands have been entered between the two <mb> commands). For
example, if you entered (mb;-10), insert (mb;10) at the end of the
command to reset the baseline.

(mh;6)

Moves horizontally by a number of relative units. Enter the number of
relative units as the argument; the units are based on the entry in the
Units field in the Header section (as well as the current font width). Do
not enter a qualifier. Positive units move right; negative units move
left.

(mv;2)!

Moves vertically by a number of relative units. Enter the number of
relative units as the argument; the units are based on the entry in the
Units field in the Header section (as well as the current font height). Do
not enter a qualifier. Positive units move the baseline down; negative
units move it up.

Reset the baseline with an {mv) command, at the end of the command
string, with the opposite value for the argument (as long as no <sh>
commands have been entered between the two <mv> commands). For
example, if you entered (mv;-2), insert (mv;2) at the end of the
command to reset the baseline.

(sh;10)!

Sets the font height to a percentage of the current font height
(including any prior font height changes made in the same
pseudofont character definition). Enter the percentage as the
argument.

(sw;10)*

Sets the font width to a percentage of the current font width
(including any prior font width changes made in the same pseudofont
character definition). Enter the percentage as the argument.

7-8 The Pseudofont Spec (PSF) Fonts

Setting Up PSF Specs

Table 7-1 Pseudofont Commands (Continued)

Command Description

(c£;30) Changes to the specified font number. The (cf) command must appear
before any <PTS code> entry that you want to ensure comes from a
particular font. In most cases, the Commands field will contain a {cf)
command. Refer to the section “Examples of Defining Pseudo
Characters” on page 7-11 for more information.

Enter the font number as the argument. The font number is the entry
in the Font Map Number field in the Header section of the PTS Spec. It is
not the font family or font variant number. After the pseudo character
is output, XPP returns to the previous font; you do not have to reset
the font number.

(td;1) Typesetter direct command. Using a (td), you can send commands
directly to the typesetter. The argument for this command must be in
the “native language” of the typesetter. When the formatter finds a
(td) it does not process the information, it passes the typesetter direct
command to the typesetter for processing. The (td) command is
ignored by the Direct-to-PDF (divpdf) program.

If you use the (td) command to change fonts, the typesetter stays in
the “new” font after outputting the pseudo character. It does not
return to the previous font. If you want to change back to the previous
font, enter the appropriate (td) command.

Typesetter direct commands can be a three-digit decimal code, a
three-digit octal code preceded by a backslash (\), or a two-digit
hexadecimal code preceded by a caret ().

You can enter multiple typesetter direct commands within one (td)
command by separating them with semicolons (;).

For information on valid commands for your typesetter, consult the
typesetter manufacturer.

(PTS codey The PTS code, in decimal notation, for the component glyphs is the
value in the Char Code field of the PTS spec and not the Unicode
number. If the original PTS code is in octal (for example, for a
Linotron typesetter), the value falls into one of three ranges — unshift,
shift, or super shift. The following table describes converting the octal
codes to decimal.

If the PTS code is decimal 40, 41, or 92, these positions have special
meanings in PostScript. Therefore, these characters must be escaped
by preceding them with a backslash (PTS code 92). For details, see
Example 2 later in this chapter.

! This command affects subsequent text unless you cancel it by entering another command.

Fonts The Pseudofont Spec (PSF) 7-9

Setting Up PSF Specs

The following table explains the conversion of PTS codes from octal to
decimal.

Table 7-2 Converting Octal PTS Codes to Decimal

If the value is in the Then ...

octal range

0-77 (unshift) convert to decimal

100-177 (shift) subtract 100; convert the remaining number to decimal'
200-277 (super shift) subtract 200; convert the remaining number to decimal®

Precede the converted decimal PTS code with the shift command (27); follow the PTS code
with the unshift command (31).

*Precede the converted decimal PTS code with the super-shift command (41); you do not
have to follow the PTS code with an unshift command.

7-10 The Pseudofont Spec (PSF) Fonts

Examples of Defining Pseudo Characters

Examples of Defining Pseudo Characters

This section consists of two examples of customizing pseudo characters.

Example 1

In this example, the first rule creates an ff ligature. Some fonts may not
include this ligature. (A ligature is a character or type combining two or
more letters, such as fi or ffl.)

=l x|

File Edit View Insert Select Help

File Comment | B

~Table Comment |

Font Mame IT’alatinu—Italic:
Style Code Isim Units 1000

Range Min |1g
L Range HMax [186q

Anicode Numher |d6‘1256 Char Width |d‘191 Style Code |

Commands |<cf;26><102><mh;-65><102>
Comment |ff ligature; F=278

micode MNumber |d6‘1259 Char Width |d?0‘1 Style Code |

Commands |<cf;26><102><mh;-65><102><mh;-H65><105>
Comment |ffi ligature; i=278

micode MNumber |d6‘1260 Char Width |d?0‘1 Style Code |

Commands |<cf ;26><102><mh;-65><102><mh;-65><108>
Comment |ffl ligature; 1=278

Ins Comment Field Tahle O of 1 Rule 1 of 3 Fld 1

Select a menu option

Figure 7-2 Examle PSF Spec

Creating the pseudo character involves the following steps:
1. Obtain information from the PTS Spec.
2. Calculate the custom pseudo character width.
3. Write the the command field entry.

4. Assign a Unicode number.

Fonts The Pseudofont Spec (PSF) 7-11

Examples of Defining Pseudo Characters

Obtaining information from the PTS Spec

To create this ligature, look in the PTS Spec to obtain the following
information for the glyph "f”

e PTS code - 102
e Width - 278
e Font number - 26 (from the PTS Spec Typesetter Information)

Calculating the custom pseudo character width

There is no specified amount of space around the glyphs. When creating a
custom pseudo character, it may take several attempts to place the
component glyphs as desired.

To create the ligature, space was removed using the (mh) command. The
amount of space to remove was determined through trial and error. If
(mh;-90) made the two “f” glyphs collide when they were output, then
lesser amounts were tried until finally the {mh;-65) was decided upon.

The pseudo character width of the ff ligature was calculated by adding the
original width of each “f” for a total width of 556, then subtracting the
space removed between the two glyphs, in this example -65, for a final
width of 491. The value d491 is entered in the Char Width field of the PSF
Spec.

(278 + 278) — 65 = 491

Writing the Commands field entry

In this example, the Font Map Number is 26 and the PTS code for “f” is
decimal 102. For the Commands field entry, you need to do the following:

Change to font 26.
Specity the first “f” by its PTS code.

Reduce space by moving back with a negative <mh> command.

Specity the second “f” by its PTS code.

Below is the entry for the Commands field:
(cf;26)(102){mh;-65)(102)

Assigning a Unicode Number

Assign a Unicode number to the new custom character. The Unicode
number for this ligature is 64256 (or xFB00); enter d64256 in the Unicode
Number field to display and output the ligature.

After you set up a PSF Spec, you must add it to the appropriate FGS

7-12 The Pseudofont Spec (PSF) Fonts

Examples of Defining Pseudo Characters

Spec(s), then you must run GenFAST before the changes take effect. For
more information, refer to|PostScript Name on page 8-1 and |[FAST
|Generation Exception| on page 10-1.

Two instances of the character f: f f
Unicode 102, Unicode 102
ff ligature
The custom character, Unicode 64256
Example 2

There appears to be extra white space around the open and close
parentheses in the PostScript NotoSerif-Regular font. You want to modify
these glyphs to eliminate this extra space.

The line below shows the placement of the parentheses and the amount of
space between the glyphs when they are set without any horizontal moves.

C(4+42)

You want to modify the open and close parentheses to reduce the amount of
space around them. This involves the following steps:

1. Obtain information from the PTS Spec.
2. Calculate the glyph widths.
3. Write the Commands field.

4. Assign Unicode numbers.

Obtaining information from the PTS Spec

To locate the values needed to customize the parentheses, look in the PTS
Spec for NotoSerif-Regular (pts_00501 in the noto library) as follows.

1. In PathFinder, navigate to STYLE LIBRARIES > Lnoto >
Phototypesetter Specs.
The pts specs appear in the List Views.

2. Right-click 00501 and select Edit.
XPP opens the _pts_00501. sde file in the Sdeditor.

Fonts The Pseudofont Spec (PSF) 7-13

Examples of Defining Pseudo Characters

’ noto/ Master pts 00501

Fle Edit View Insert Select Help

File Comment]Postscript Noto Serif Regular

Table Comment]Created Tue Sep 13 10:38:01 2022

Font Name NotoSerif-Regular
Typesetter Information

Font Map Number |501 Units 1000 Style Code]srm
Slant off 4 Range Min |1q Range Max |186q

CHAR UNICODE CHAR CHARACTER OVERRIDES
| CODE NUMBER WIDTH STYLE CODE SLNT COMMENT
x28 |x28 |d346 | |- d|parenleft
|x29 lX29]d346] |— j]parenright
|x2A [x2A |[dsee | [- 4|asterisk
Ad 4

Ins Ascll Table 1 of 1 Rule 4 of 3255

Figure 7-3 PTS Spec: pts_00501.sde

Gather the following information:

® PTS codes - x28 (d40) for open parenthesis, x29 (d41) for close
parenthesis

® Unicode numbers - 40 (x28) for open parenthesis, 41 (x29) for close

parenthesis
e widths - d346 for both glyphs

e font number - 501 (from the Font Map Number tield of the PTS Spec)

Calculating the pseudo character widths

The original width of each glyph is 346 units. After experimenting with

various values, you decide to remove 30 units of space before and after each

glyph:
346 — (30 + 30) = 286

The entry in the Character Width fields for these pseudo characters is 286.

Note: The font vendor does not supply information about the amount of space

around the characters. When modifying a glyph, it may take several attempts to

place it as desired.

7-14 The Pseudofont Spec (PSF)

Fonts

Fonts

Examples of Defining Pseudo Characters

Writing the Commands field entries

In this example, the font number is 501, the PTS code for the open
parenthesis is 40, and the PTS code for the close parenthesis is 41. These two
character codes have special meanings in PostScript. To use them literally,
they must be preceded by a backslash, which is PTS code 92. Only one other
character code requires this treatment: the backslash itself (in position 92).

Therefore, the command line must do the following:

e Change to font 501.
® Reduce space before the glyph with an <mh> command.

® Enter the literal glyph by first specifying the PTS code for a backslash,
then specifying the PTS code for the parenthesis.

® Reduce space after the character with another <mh> command.

Below are the two Commands field entries.
(cf;501)Xmh;-30)%092){040)mh;-30) for the open parenthesis
(cf;501)Xmh;-30)092){041){mh;-30) for the close parenthesis

Note: These entries are used only for setting the parentheses as modified pseudo
characters. They do not include information on the glyphs before and after the
parentheses. This was just an example; these situations are probably better handled
with kerning pairs.

Assigning Unicode Numbers

Use the same Unicode numbers that were assigned to these parentheses in
the PTS Spec (40 and 41).

After you set up a PSF Spec, you must add the information to the
appropriate FGS Spec(s) (in this case, _fgs_00501.sde); then, you must run
GenFAST before the changes take effect. Refer to PostScript Name|on page
8-1 and [FAST Generation Exception on page 10-1 for more information. In
this situation, where pseudo characters in the PSF Spec have the same
Unicode numbers as found in the PTS Spec, list the PSF Spec before the PTS
Spec in the FGS Spec.

The following example shows the placement of the characters after being
modified. The extra space between the characters is reduced.

C4+2)

Note: If you need to adjust the placement of accents over PostScript small caps, see
“ Accents OQver Small Caps” on page 17-1.

The Pseudofont Spec (PSF) 7-15

Examples of Defining Pseudo Characters

7-16 The Pseudofont Spec (PSF) Fonts

Chapter 8

The PostScript Name Spec
(PSN)

This chapter describes the PSN Spec, its contents, and its workings.

Fonts The PostScript Name Spec (PSN) 8-1

The PSN Spec

The PSN Spec

The PostScript Name (PSN) Spec maps PostScript character (or glyph)
names to the Unicode numbers. Build FAST uses this information to
generate FASTs only for PostScript Type 1 base fonts (not OpenType or CID
fonts). You may map multiple PostScript names to the same Unicode
number.

There are two PSN Specs:

® psn_ps2xcs

® psn_custom

psn_2xcs Spec

The psn_2xcs Spec contains many of the character names you need for most
applications. This is a default spec and should not be edited. If XPP cannot
locate a character name in psn_custom, it searches this spec.

-Ioix]

File Edit View Insert Select Help

LL-

File Cumment|XguiSiun delivered— DD NOT EDIT- Change psn_custom

Table Comment |Postscript Character MName to Standard XCS character set;
Feh. 1999: fAdded Euro.

P3 Name|nhspace Unicode Numherldﬂ
Descriptiun|nh space

P3S Name|.nntdef Unicode Numherld@
Description not def ined

P3 Name|enda3h Unicode Numherldﬁle
Description [en dash

P3 Name|emaligndash Unicode NumherldﬁZlZ
Description [emdash

P3 Name|emda3h Unicode NumherldﬁZlZ
Description [em dash

Ins Comment Field Tahle O of 1 Rule 1 of 3720 Fld 1

Figure 8-1 Top of the PostScript to Unicode, psn_ps2xcs Spec

The psn_ps2xcs Spec contains the same fields as the psn_custom Spec. They
are discussed on page 8-4.

8-2 The PostScript Name Spec (PSN) Fonts

Fonts

The PSN Spec

psn_custom Spec

Build FAST searches the psn_custom Spec first. You can edit this spec and
specify character names that are specific to your own site, which may
include logos or other specialty characters.

E syslib/ Master psn custom ;Iglll

File Edit View Insert Select Help

File Cumment|Cu3tumer Specific PostScript Character Name to XCSH

Table Comment [May 10, 1996

[I

P3 Name|xgcudestart Unicode Numherld934035
Description ﬁeuerse Uideo Xycode start

B

Ins Comment Field Tahle @ of 1 Rule 1 of 1 Flda 1

Figure 8-2 The PostScript to Unicode psn_custom Spec

You would typically modify the psn_custom Spec when, in the process of
loading a new font, you encounter character names in the PostScript .afm
file that XPP does not recognize.

If you know what the character is, you may attempt to map it to a Unicode
number that represents the same character, only under a different name.

If you do not know what glyph the character represents, or if there is no
apparent existing Unicode mapping for the character, you may assign it to
the Unicode private area.

Occasionally, with Pi fonts, characters with unintelligible names (e.g.,
152368 or thang1) are characters for which XPP does not have a Unicode
number (e.g., the character, horsetrail, in the Carta font). To use these
characters successfully, you must map them in the psn_custom Spec.

The psn_custom Spec contains the same fields as the psn_ps2xcs Spec. They
are discussed on page 8-4.

The PostScript Name Spec (PSN) 8-3

The PSN Spec

The Build FAST Process

The .afm file assigns a character code to a character/glyph. The .afm file
also assigns a character name to a character.

Build FAST does the following;:
® Searches the PS Name field in the PSN Spec for that character name, for
example, endash.

It searches the psn_custom Spec first. If unable to locate the character
name there, it searches the psn_ps2xcs Spec.

® Copies the Unicode number and the entry in the Description that are
associated with that character name.

For example, the Unicode number for character name endash is d8211
(x2013) (which may or may not be the same as the character code in
the .afm) and the entry in the Description field is en dash.

® Enters the information in the appropriate fields in the PTS Spec.

For OpenType fonts, Build FAST does not refer to the PSN Spec for
information. All OpenType font information is contained in the .otf or .ttf
file and the .afm file generated from them by Font Copy.

Accessing the PSN Spec

You access the PSN Spec (psn_ps2xcs and psn_custom) from PathFinder
using the following sequence:

STYLE LIBRARIES > Lsyslib > PostScript Names

The fields are the same in both the psn_ps2xcs Spec and the psn_custom
Spec.

The PSN Spec Fields

Each spec consists of one table, with one rule for each PostScript character
name. The fields in the PSN Spec are:

File Comment

User-provided information about this spec, often includes information
concerning the edit history of the file.

Table Comment

Generally describes the rules of the table. Maximum 7.5 lines.

8-4 The PostScript Name Spec (PSN) Fonts

The PSN Spec

PS Name

PostScript character (or glyph) name. Maximum 31 characters.

Unicode Number

Enter the Unicode number assigned to that character. Maximum eight
alphanumeric characters. It must be a valid Unicode number for XPP.

Description

Description of the character. Maximum 30 characters.

Fonts The PostScript Name Spec (PSN) 8-5

The PSN Spec

8-6 The PostScript Name Spec (PSN) Fonts

Fonts

Chapter 9

The FAST Generation Spec
(FGS)

This chapter contains the following information on the FAST (Font Access
Tables) Generation (FGS) Spec:

¢ Understanding the FGS Spec
® Setting up FGS Specs
e Examples of Style Code Overrides Field Entries

The FAST Generation Spec (FGS) 9-1

Understanding the FGS Spec

Understanding the FGS Spec

To create FASTs for text fonts, you set up an FGS Spec for each font that
calls in usually one PTS Spec. You may also call in a PSF Spec if you defined
any pseudo characters. By default, the Build FAST utility creates a PSF Spec
for three ligatures, and includes this in the FGS Spec (you may enable or
disable use of these ligatures through the FV Spec).

To create FASTs for Pi fonts, you typically set up FGS Specs that call in
several PTS Specs. This gives you the flexibility of accessing characters from
several fonts without having to manually change font families while editing
a division.

You can reference as many as three FASTs in one rule of the Font Variant
Spec. Typically, you would reference a text FAST as the primary FAST and a
Pi FAST as the secondary FAST.

If all of the Pi characters are in one FAST, you can access them without
changing fonts. If these characters were in separate FASTs, each tied to its
own Font Variant, to access them, you would have to change fonts while
editing a division.

Delivered FGS SpecsXPP delivers FGS Specs to the noto
library, which access the standard 163 Noto OpenType
fonts.

Accessing the FGS Spec

Access the FGS Spec using the following sequence:
STYLE LIBRARIES > Llibrary (e.g., Lnoto) > FAST Generation

When to Edit FGS Specs

You would edit an FGS Spec when you want to create or modify a FAST. In
the case of secondary FASTs, you may want to add more Pi fonts to the
FAST. In the case of a primary FAST, which usually represents a single text
font, you may want to add pseudofont characters (e.g., you have modified a
copyright character so that it always outputs in superscript).

9-2 The FAST Generation Spec (FGS) Fonts

Understanding the FGS Spec

GenFAST

GenFAST is a program that you run against an FGS Spec in order to build
the FAST. If you have modified a PTS or PSF Spec that is referenced in the
FGS Spec, or the FGS Spec itself, you need to run GenFAST.

Running GenFAST

To run GenFAST:

1. From the PathFinder Tree View, select the following sequence:

STYLE LIBRARIES > Llibrary (e.g., Lnoto) > FAST Generation
PathFinder displays the FGS Specs in the List View.

2. Right-click the FGS Spec number in the List View.
PathFinder displays a pop-up menu.

3. Select the following sequence from the Pop-up menus:
Tools > Generate FAST .
XPP displays a message box when the process is complete.

Fonts The FAST Generation Spec (FGS) 9-3

Setting Up FGS Specs

Setting Up FGS Specs

The Build FAST utility creates the FGS Spec. In order to edit an FGS Spec,
gather the following information.

e Alist of the PTS (and, optionally, PSF) Specs that you want to include
in a FAST.

® Style codes — A list of the codes for the character styles you want
included in the FAST.

® Pifont numbering scheme — refer to Table 9-1 for an explanation of
FGS Spec names for Pi fonts.

® Font name — the name of the font, for example, Times, Helvetica, and
SO on.

® Variant name — the name of the variant, for example, Bold, Medium,
Italic, and so on.

Naming an FGS Spec

FGS Specs for text fonts are usually named for the FAST number specified
in the Build FAST utility. An FGS Spec name consists of the _fgs_ prefix
followed by a five-digit number between 00001 and 65535.

Note: Always include leading zeros.

The name of the FGS Spec becomes the FAST number, when you run
GenFAST on it. FGS Spec names should be unique.

The FGS Spec for text fonts is typically referenced as the primary FAST

number in the FV Spec. The FGS Spec for Pi fonts is typically referenced as
the secondary FAST number in the FV Spec.

9-4 The FAST Generation Spec (FGS) Fonts

Fonts

Setting Up FGS Specs

The following table explains the recommended FGS Spec names for the
NotoSansSymbols fonts Secondary FASTs.

Table 9-1 Recommended FGS Spec Naming Conventions for NotoSansSymbols

Fonts Secondary FASTs

Digit 1to4

5

Entries: 1000"

Font Weight

1 = Regular

2 = Bold

3 = Medium

4 = SemiBold

5 = ExtraBold
6 = Black

7 = ExtraLight
8 = Light

9 = Thin

! The 10000 range is used for the Pi FAST numbers to avoid conflicts with lower FAST numbers typically

used for text fonts.

XPP delivers 9 Pi font FGS Specs for the NotoSansSymbols family to the

noto library:
Regular fgs_10001
Bold fgs 10002
Medium fgs 10003
SemiBold fgs_10004
ExtraBold fgs 10005

Black fgs_10006
ExtraLight fgs_10007
Light fgs 10008

Thin fgs 10009

The FAST Generation Spec (FGS) 9-5

Setting Up FGS Specs

The following table explains the recommended FGS Spec names for the

deprecated Type 1 Pi fonts.

Table 9-2 Recommended FGS Spec Naming Conventions for Deprecated Type 1

Fonts Secondary FASTs

Digit 1and2 3

4

Entries: 10 Typeface

0 = serif
1 = sans serif

Variant

0 = medium

1 =bold

2 = italic

3 = bold italic

4 = lite

5 = lite italic

6 = extra lite

7 = extra lite
italic

8 = extra bold

9 = extra bold
italic

Range

6 = non-ranging

or range 1
7 =range 2
8 =range 3
9 =range 4

! The historic naming conventions that XPP uses for secondary FASTs are derived from the use of

typesetting devices, most of which have been replaced by PostScript output devices. The “10” entries
were above the range of font numbers on most typesetters.

2Older typesetters required multiple fonts to output the same character at different point size ranges.

Eight Type 1 Pi font FGS Specs were delivered to the deprecated post and

postuni libraries:

fgs_10006 fgs 10106
fgs 10016 fgs 10116
fgs 10026 fgs 10126
fgs 10036 fgs 10136

The following table shows the recommended names for FGS Specs for the
deprecated Type 1 Pi fonts by the style of the font. The name was selected
according to the style of the Pi font being specified. Style codes are

described later in this chapter.

Table 9-3 Recommended FGS Spec Names for Deprecated Type 1 Pi Fonts

Serif FGS Spec Sans Serif EGS Spec
Pi Font Style Name Pi Font Style Name
srm 10006 nrm 10106
srb 10016 nrb 10116
sim 10026 nim 10126
9-6 The FAST Generation Spec (FGS) Fonts

Fonts

Setting Up FGS Specs

Table 9-3 Recommended FGS Spec Names for Deprecated Type 1 Pi
Fonts (Continued)

Serif FGS Spec Sans Serif EGS Spec
Pi Font Style Name Pi Font Style Name
sib 10036 nib 10136
srl 10046 nrl 10146
sil 10056 nil 10156
sre 10066 nre 10166
sie 10076 nie 10176
srx 10086 nrx 10186
six 10096 nix 10196

Structure of an FGS Spec

An FGS Spec consists of a File Comment field and one table with the
following sections:

® Header — contains comment fields plus default information for the
whole file

® Rules — contain the name of the PTS or PSF Spec you are adding to
the FAST and a field for specifying style codes

The following figure shows the structure of the FGS Spec.

¥ noto/ Master fgs 00501 - *

File Edit View Insert Select Help 3 5 i
A User-provided information

File Comment "\Ioto Serif Regular about this Spec.

Table Comment |Created Tue Sep 13 10:38:81 2022

: = 5 Specify information such as
Family Name [NotoSerif variant Name |[Regular o
Range: Min |1q Max [186q Units |1000 style of character to be
style Code Exact Match included in the FAST.

PTS/PSF Spec Style Code Overrides
Define the PTS and PSF Specs

|00501 |srm for GenFAST to use. Also,

[End of File] specify style of character to
include in the FAST.

Ins Comment Field Table 0 of 1 Rule 0 of 1 Ad 1

Figure 9-1 FAST Generation Spec

The FAST Generation Spec (FGS) 9-7

Setting Up FGS Specs

Header Fields

This section contains descriptions of the header fields and their valid
entries.

Family Name

The name of the font family (e.g., NotoSerif, NotoSans, and so on), or
indicate Pi fonts (e.g., Pi Characters.)

Do not enter font variant information in this field; enter font variant
information in the Variant Name field.

Entry Description

string As many as 18 alphanumeric characters, including uppercase
and lowercase characters, spaces, symbols (such as $, &, and
/), and the integers 0-9.

Variant Name

The variant name for this font family (e.g., Bold, Medium, and so on). If you
have applied pseudo-slant to the glyphs in this font, enter a name that
indicates the pseudo-slant. Do not enter font family information in this
field; font family information goes in the Family Name field.

Entry Description

string As many as 12 alphanumeric characters, including uppercase
and lowercase characters, spaces, symbols (such as $, &, /),
and the integers 0-9.

Range: Min/Max

The smallest point size or the largest point size for outputting any character
in this FAST. The entry in this field must be greater than or equal to the
entry in the Range: Min field or Range: Max field in all the PTS/PSF Specs

listed in the FGS Spec.
Entry Description
number A positive numeric value, followed by a valid unit qualifier,

in the range of 0 through 186.1q or the equivalent in p, i, m,
n, ¢, d, k units. This field entry defaults to 1q for the min, but
XPP can only output a minimum of 4.5q, and 186.1q for the
max.(Technically, you can specify a smaller point size, but
some things having to do with pickup placement and/or
leading may not work properly.)

9-8 The FAST Generation Spec (FGS) Fonts

Units

Setting Up FGS Specs

This field controls the base units (units per em) the system uses to display
all character widths when you view a FAST.

Entry Description

integer An integer in the range of 1 through 65535. This field entry
defaults to 1000.

Style Code Exact Match

Fonts

Using this field, you can specify glyphs you want GenFAST to pick up by
their style codes. GenFAST picks up only the glyphs in the PTS and PSF
Specs that exactly match the style codes in this field. It ignores glyphs that
do not have all the attributes listed in this field; it also ignores glyphs that
have attributes in addition to those listed in this field. Therefore, this field is
frequently left blank.

GenFAST uses the Exact Match field if the Style Code Overrides rule field is
blank. GenFAST uses the Style Code Overrides field if it contains an entry
whether the Exact Match field is blank or not. If the Exact Match field and the
Style Code Overrides rule field for all the rules are blank and there is no FAST
Generation Exception Spec, GenFAST does not produce a FAST. Therefore,
do not leave all Style Code Overrides fields blank. Typically, you would leave
the Exact Match field blank and use the Style Code Overrides field to select
characters.

Follow these guidelines when entering style codes in this field:

e Use only valid codes.
® Enter the codes in any order.

® Do not use spacebands and underbars; they are not valid entries. The
system does not check for invalid codes when exiting the field,
however, you cannot successfully run GenFAST if the field contains an
invalid code.

o If the field contains the value a (all attributes) GenFAST picks up

glyphs with an a or all style codes individually entered in the Style
Code field of the PTS or PSF Spec.

e Use only lowercase letters for entries.

Entry Description

no entry If this field is blank (default), the Style Code Overrides field
must contain an entry.

s serif.

n sans serif.

i italic (slanted; oblique).

The FAST Generation Spec (FGS) 9-9

Setting Up FGS Specs

Entry

Description

r

roman (upright).

e

extra light; describes the glyph weight.

[—

light; describes the glyph weight.

medium; describes the glyph weight.

bold; describes the glyph weight.

5T |8

heavy; describes the glyph weight.

extra bold; describes the glyph weight.

inferior; describes a typeface used to set inferior text.

superior; describes a typeface used to set superior.

small caps; describes small cap glyph.

other; a characteristic not represented by any other style code
in this list. This code is undefined until you determine the
meaning. For example, you could set style code o to stand for
an outline font.

all attributes; the same as individually entering all the
attribute codes listed.

! This style code is often used for Pi fonts that can be used with any style text font.

Rule Fields

This section contains descriptions of the rule fields and their valid entries.

PTS/PSF Spec

The name of the PTS or PSF Specs that contain the glyphs to include in the
FAST. Enter the PTS/PSF Specs in the order of preference.

If the same Unicode Number is in multiple PTS/PSF Specs, the FAST
contains the first occurrence it finds.

Entry

Description

string

The name of an existing PTS or PSF Spec can be as many as
eight alphanumeric characters, including uppercase and
lowercase characters, spaces, symbols (such as $, &, and /),
and the integers 0-9.

9-10 The FAST Generation Spec (FGS) Fonts

Setting Up FGS Specs

Style Code Overrides

Using this field, you can specify glyphs you want GenFAST to pick up,
even though they do not match the style codes in the Exact Match field.

Determine the font characteristics from the PTS/PSF you want to include in
the FAST and the font characteristics you want to exclude from the FAST.

Enter the style codes for these characteristics in the format (without any
space before or after the hyphen):
codes you want - codes you do not want

Of the codes specified before the hyphen, GenFAST picks up the glyphs
having at least these style codes; they may have additional style codes. For
the codes specified after the hyphen, GenFAST ignores glyphs having any
of these style codes even if they have any of the style codes specified before
the hyphen.

The field does not have to contain style codes that both include and exclude
glyphs from the FAST. If you enter only codes to include a glyph in a FAST,
do not enter the hyphen. Likewise, you can enter only codes that will
exclude a glyph—enter a hyphen followed by the codes; do not enter any
codes before the hyphen.

If you enter a value of a (for all attributes) before the hyphen, GenFAST
picks up all glyphs in the specified PTS/PSF Spec. If you enter a value of a
after the hyphen, GenFAST picks up glyphs in the PTS/PSF with no style
codes specified.

GenFAST uses the Style Code Overrides field if it contains an entry whether the
Exact Match field is blank or not. If the Style Code Overrides field is blank, the
system uses the entry in the Exact Match field. If the Style Code Overrides fields
for all the rules and the Exact Match header field are blank, and there is no
FAST Generation Exception Spec, GenFAST does not produce a FAST.

Entry Description

style code(s) Up to 15 style codes and the optional hyphen (-). Entries that
are valid for the Exact Maich field are also valid for this field.
Refer to the description of the Exact Match field entries.

no entry If this field is blank (default), GenFAST uses the Exact Match
header field entry. If both this field and the Exact Match field
are blank, and there is no FAST Generation Exception Spec,
GenFAST does not produce a FAST.

Fonts The FAST Generation Spec (FGS) 9-11

Setting Up FGS Specs

Examples of Style Code Overrides Field Entries

This section consists of two examples of how the system uses the entries in
the Style Code Overrides field.

Example 1

The Style Code Overrides field contains srm.
GenFAST does the following:

e Searches the PTS or PSF Spec listed in the FGS Spec.
® Picks up glyphs having the style codes srm (either in the header or the
rule field).

If the header or the rule field contains other style codes in addition to srm
(e.g., usrm), GenFAST still picks up the glyphs.

Example2

The Style Code Overrides field contains srm-u.
GenFAST does the following:

® Searches the PTS or PSF Specs listed in the FGS Spec.

® Picks up glyphs having the style codes srm but not the style code u
(either in the header or the rule field):

e [f the PTS/PSF rule field contains usrm or ucsrm, GenFAST does
not pick up the glyph, even though it matches the style codes srm.

e If the Style Code header field in the PTS/PSF Spec contains usrm or
ucsrm, GenFAST does not pick up any glyphs in that PTS/PSF
because of the u.

9-12 The FAST Generation Spec (FGS) Fonts

Chapter 10

The FAST Generation
Exception Spec (FGX)

This chapter contains the following information on the FAST Generation
Exception (FGX) Spec:

¢ Understanding the FGX Spec
® Setting up FGX Specs

Fonts The FAST Generation Exception Spec (FGX) 10-1

Understanding the FGX Spec

Understanding the FGX Spec

Using a FAST Generation Exception (FGX) Spec, you can include glyphs in
a Font Access Table (FAST) Spec that are not in any of the Phototypesetter
(PTS) or Pseudofont (PSF) Specs specified in the FAST Generation (FGS)
Spec. These glyphs are additions to the glyphs in the FGS Spec that has the
same name. FGX Specs are optional.

When you run GenFAST against a specified FGS Spec, it also runs against
the FGX Spec of the same name—if one exists.

You can also specify glyphs that are exceptions to the glyphs in the
specified PTS/PSF Spec. By using the same Unicode number, but different
glyph information in the fields, you can include an exception glyph.

For example, you are using Century Schoolbook, but you want Century Old
Style numbers. Using the FGX Spec, you can overwrite the Century
Schoolbook numbers in the PTS with the Century Old Style numbers in the
FGX, and thus in the FAST.

In another case, GenFAST included a trademark symbol with Unicode
number x2122 from a PTS Spec. You prefer the trademark symbol from
another font, so you include a rule in the FGX Spec for the trademark
symbol you like. When processing the FGX Spec, GenFAST finds the
trademark symbol with Unicode number x2122 and overwrites the
trademark symbol from the PTS Spec.

Note: Since GenFAST reads the FGX Spec last, glyphs in the FGX Spec overwrite
existing glyphs in the FAST with the same Unicode numbers.

Alternatively, you could achieve the same result by creating another PTS Spec with
the additional glyphs, and listing that PTS Spec earlier in the FGS Spec. In this
case, the order in which the PTS Specs are listed makes a difference.

Accessing the FAST Generation Exception Spec

You access the FAST Generation Exception (FGX) Spec using the following
sequence in the PathFinder Tree View:

STYLE LIBRARIES > Lfontlib (e.g., Lnoto) > FAST Generation Exceptions

10-2 The FAST Generation Exception Spec (FGX) Fonts

Setting Up FGX Specs

Setting Up FGX Specs

Fonts

Before editing an FGX Spec, get a printout of the PTS Spec(s) containing
information on the exception glyph(s) you want to include. You can refer to
it for information such as character codes, Unicode numbers, and glyph
widths.

Naming an FGX Spec

When you create an FGX Spec, you assign it a name consisting of the
fgx prefix followed by a five-digit name between 00001 and 65535. Note
that leading zeros must be included.

The FGX Spec must have the same name as the FGS Spec, for example,
_fgx_00015.sde and _fgs 00015.sde. GenFAST looks in the specified font
library and processes only the FGX Spec with the same name as the
specified FGS Spec.

Structure of an FGX Spec

An FGX Spec consists of a File Comment field and one table with the
following sections:

o Header — contains Table Comment and Units fields.

® Rules — contain information about each exception glyph in the FAST.
There is one rule for each exception glyph.

The following figure shows the structure of the FGX Spec.

-l

File Edit View Insert Select Help

File Cumment]Centurg Schoolbook Bold

L— -

—Tahle Comment |TAE 042795 modified for CAS Pubs; KXC 06794 Added hold ov dot
Lccents; KXC original 04-12-94 Added medium accents.
Units [fess
CHaR UMICODE CHaR —— FONT —
LCODE HUMBER WIDTH MAP # SLHNT COMMEMT
|d60 |d60 |d?30 |40 |uff + |less than
£
Ins Comment Field Tabhle © of 1 Rule 1 of 24 Fld 1

Figure 10-1 FAST Generation Exception Spec

Note: The Comment field has been reduced to produce this image. The field can
contain 30 characters on one line.

The FAST Generation Exception Spec (FGX) 10-3

Setting Up FGX Specs

Units

Char Code

Header Fields

This section contains descriptions and valid entries for the header fields.

PostScript width values are specified relative to 1000 units per em. This
value is the same as the value in the Units field of the PTS Spec.

Entry Description

integer An integer in the range of 1 through 65535.
This field entry defaults to 1000.

Rule Fields

The FGX Spec contains a rule for each exception glyph in the font. Do not
leave any field blank. Fields that accept values in decimal, octal, and
hexadecimal default to dO, 00, or x0 depending on the current notation.

Refer to the Char Code description on page 6-9 for valid entries.

Unicode Number

Enter the Unicode number assigned to this glyph.

Character Width

Font Map #

Font Slant

Comment

Refer to the Character Width description on page 6-10 for valid entries.

Refer to the Font Map Number| description on page 6-6 for valid entries.

Refer to the description on page 6-6 for valid entries.

A comment pertaining to the character accessed by this rule.

Entry Description

string A comment as long as 30 alphanumeric characters, including
uppercase and lowercase characters, spaces, symbols (such as
$, &, and /), and the integers 0-9.

10-4 The FAST Generation Exception Spec (FGX) Fonts

Fonts

Chapter 11

Creating and Viewing FASTs

This chapter contains information on the following topics:

The FAST generation process (GenFAST)
How GenFAST reads the font specs
Running GenFAST

Font Access Tables (FASTs)

Listing all FASTs in a font library
Verifying correct widths in FASTs

Creating and Viewing FASTs 11-1

The FAST Generation Process (GenFAST)

The FAST Generation Process (GenFAST)

The GenFAST program creates a FAST by combining information from the
PTS and PSF (if any) Specs referenced in the specified FGS Spec as well as
any FGX Spec that matches the name of the FGS Spec. GenFAST reads the
specs, selects the Unicode characters, and puts the information in the FAST
in order by Unicode number.

The following figure shows the GenFAST process of reading the font specs
for information and building the FAST. For a detailed description of how
GenFAST reads each of the specs, refer to the section “How GenFAST Reads
the Font Specs” on page 11-3.

When Do I Run GenFAST?
Run GenFAST after editing any one of the following specs:

® An FGS Spec

® Any PTS Spec or PSF Spec listed in an FGS Spec

® An FGX Spec that matches the name of the FGS Spec
Note: To add a new supported font, use the Build FAST utility, which

automatically creates all the necessary font files and runs GenFAST for you. For
more information about Build FAST, refer to page 1-10.

11-2 Creating and Viewing FASTs Fonts

How GenFAST Reads the Font Specs

FGS ___ GenFAST reads the specified FGS Spec.
Spec
A/\ __ GenFAST extracts character information from
PTS ” PSF ” PTS Spec(s) and PSF Spec(s) (if any), and
puts this information into corresponding rules
Specs Specs in the FAST.
FGX __ GenFAST reads the FGX Spec (if any) and extracts character
Spec information. It puts this information into the FAST, overwriting
p+ information if the character already exists in the FAST.
XCS __ GenFAST uses the Name field entry for the Comment field
Spec entry in the FAST.
+ __ The FAST contains character information. To view the
information, use the View FAST option on the pop-up menu:
FAST STYLE LIBRARIES > Xlibrary > FASTs > Specific FAST file >
View FAST. To view the commands for creating pseudo
characters, use the View Pseudo Characters option on the

pop-up menu: STYLE LIBRARIES > Xlibrary > FASTs >
Specific FAST file > View Pseudo Characters.

Figure 11-1 The GenFAST Process

How GenFAST Reads the Font Specs

Fonts

GenFAST processes the entries in the FGS, PTS, PSF, and FGX Specs in a
particular order. This section explains how GenFAST processes the PTS and
PSF Specs and their entries so you can determine the order in which to list
them in the FGS Spec.

The following figure shows the order in which GenFAST reads the font
specs.

The following sections describe the phases shown in the figure above.
Phase 1

GenFAST performs the following steps during Phase 1:

1. GenFAST reads the FGS Spec from top to bottom, reading the first rule
in the spec and processing the referenced PTS or PSF Spec.

Note: The FGS Spec can reference PTS and PSF Specs and GenFAST can
reference FGX Specs that live in related numbered libraries (e.g., noto, notol,
noto2). GenFAST also looks in the related numbered font libraries for the
specs.

2. GenFAST processes the PTS/PSF Spec from top to bottom and adds

Creating and Viewing FASTs 11-3

How GenFAST Reads the Font Specs

___ You can specify

FGS multiple PTS
and PSF
Specs, in any
order, in the
FGS Spec.
or
= GenFAST _ GenFAST
- reads the looks in the
PTS PSF specs in the FGX library for an
order in FGX Spec with
which they the same name
appear in as the FGS
the FGS Spec, then
Spec (listin reads it. FGX
Phase 1 1 order of Phase 2 specs have top
preference). priority.

Figure 11-2 How GenFAST Reads the Font Specs

11-4 Creating and Viewing FASTs

Unicode characters to the FAST, in order by Unicode number, to the
FAST if one of the following criteria is met:

® The style of the glyph defined by this Unicode number matches the
style specified in the Style Code Overrides field in the FGS Spec.

e [f the Style Code Overrides field is blank, the style of the glyph defined
by this Unicode number matches the style specified in the Exact
Match field.

If both the Style Code Overrides and Exact Match fields are blank, GenFAST
does not add any of the Unicode characters in the specified PTS/PSF
to the FAST.

GenFAST adds Unicode characters that match the specified style
code(s) to the FAST.

If GenFAST finds a duplicate Unicode number that also matches the
specified style code(s) in the same PTS or PSF Spec, it overwrites the
existing information in the FAST with the new information. If
GenFAST finds a duplicate Unicode number that does not match the
specified style code(s), it ignores it.

Be careful when repeating Unicode numbers in a PTS/PSF Spec: you
may not get the glyph you expected in the FAST. You can have two
rules specifying the same Unicode number, but with different style
codes. For example, you may have a serif and a sans serif copyright
glyph in one font. In the PTS Spec, they have the same Unicode
number, but different style codes.

. GenFAST then goes back to the FGS Spec, reads the next rule, and
processes the referenced PTS or PSF Spec. If GenFAST finds a Unicode

Fonts

Fonts

How GenFAST Reads the Font Specs

character that is already in the FAST (from a previous PTS/PSF Spec), it
ignores it. Therefore, it is important to list the PTS and PSF Specs in
order of preference.

4. GenFAST continues reading the FGS Spec, processing the specs, until
it has processed the last FGS Spec rule. It then goes on to Phase 2.

Phase 2

GenFAST performs the following steps during Phase 2:

1. GenFAST looks in the specified font library for an FGX Spec with the
same name as the FGS Spec. If the library contains an FGX Spec,
GenFAST processes it. If the library does not contain an FGX Spec, the
GenFAST process is complete.

2. GenFAST processes the FGX Spec from top to bottom, adding or
replacing the specified Unicode characters in the FAST.

GenFAST adds the FGX Unicode characters to the FAST independent
of style codes, that is, there are no style codes to match. If GenFAST
finds a Unicode number that was already selected from a PTS or PSF,
it overwrites it. Exception Unicode characters defined in the FGX Spec
supersede the Unicode characters specified in the PTS/PSF Specs.

Example of GenFAST

GenFAST is run on the fgs_00001 Spec containing rules specifying PTS
Specs 00001 and 09001, both with srm in the Style Code field in the Typesetter
Information section.

Creating and Viewing FASTs 11-5

How GenFAST Reads the Font Specs

The following figure shows how GenFAST processes the specs and adds
Unicode characters to the FAST.

Running GenFAST

FGS Spec (fgs_00001)

Shyle Code
PTS/PSF Spec Owvernides
00001 s
09001 s

l

PTS Spec (pts_00001)

UMICODE CHARACTER
MUMBER OWVERRIDES
STYLE CODE COMMENT

cap A
small cap A

x41 5
x41 SITTH:

1
PTS Spec (pts_09001)

UMICODE STYLE CODE COMMENT
MUMBER

x41 SITT alpha

FGX Spec (fgx_00001)

UNICODE COMMENT
MNUMBEER
Results of GenFAST
FAST Spec (fx_00001)
UNICODE CHARACTER
NO. COMPMEMNT
x41 small cap A

Figure 11-3 GenFAST Example

11-6 Creating and Viewing FASTs

GenFAST runs on FGS Spec 00001.

GenFAST processes pts_00001 (because
it appears first in the FGS Spec) and adds
the uppercase “A” with Unicode number
x41. Farther down in the spec, GenFAST
finds another Unicode number x41. It
overwrites the existing FAST entry with the
information for this glyph. The FAST now
contains the small cap “A,” not the
uppercase “A.”

When processing pts_09001, GenFAST
finds another Unicode number x41.
GenFAST ignores this code because it is
already in the FAST.

GenFAST processes fgx_00001 and adds
any specified characters. If it finds another
Unicode number x41, it overwrites the one
already in the FAST. This FGX Spec does
not contain another Unicode number x41.

The final FAST contains the small cap “A”
that appeared later in pts_00001.

Fonts

Running GenFAST

Running GenFAST

This section describes the tasks to complete and the steps to perform before
running GenFAST. Read both sections before attempting to run GenFAST.

Note: The Build FAST utility sets up all the necessary specs and runs GenFAST
for you automatically. If you are installing new fonts, use the Build FAST utility
(refer to page 1-10 for information).

Before running GenFAST, ensure that you have set up the specs needed to
generate a FAST:

e PTS Spec(s)
® FGS Spec(s)

® PSF Spec(s) (optional — to manipulate the output of a glyph or
multiple glyphs)

e FGX Spec(s) (optional — to specifically include glyphs that otherwise
would not be in the FAST)

To run GenFAST from PathFinder:

1. Select STYLE LIBRARIES > Llibrary (e.g., Lnoto) > FAST Generation
in the Tree View.
PathFinder displays the FGS Specs in the List View.

2. Right-click the FGS Spec you want to process.
PathFinder displays a pop-up menu.

3. Select Tools > Generate FAST.

Gau tion

Fonts

When you start GenFAST, the program immediately overwrites any existing FAST with the
same number in the font library.

GenFAST reads the FGS Spec and creates the FAST using the information in
the font specs in the specified source library. It then processes the FGX Spec
(if any).

The resulting FAST goes in a destination library (an “X” library) named for
the source library (e.g., Xnoto). If you are using numbered source libraries
(e.g., noto, notol, noto2, etc.), GenFAST places the FAST in the destination
library named for the main source library (e.g., noto). A FAST has the same
name as the FGS Spec from which it was created. Refer to “Source and
Destination Libraries” on page 5-2 for information on the full path names of
source and destination libraries.

Creating and Viewing FASTs 11-7

Running GenFAST

For example, you can run GenFAST in Lnotol using the fgs_00100 Spec.
GenFAST stores the resulting FAST, named fx_00100, in Xnoto, the
destination library.

11-8 Creating and Viewing FASTs Fonts

Font Access Tables (FASTs)

Font Access Tables (FASTs)

Fonts

A FAST is a machine-readable file that contains the glyph width
information needed for composition.

You cannot directly edit a FAST. You can create a view-only version of the
FAST. The view-only version of a FAST is known as the VFX Spec. A FAST
also contains the commands from PSF Specs (if any) that were used to
modify glyphs; however, you cannot see them when you view the VFX
Spec. To view those commands, you must generate and view the VPX (View
Pseudo FAST) Spec.

Viewing Characters in a FAST
To view the characters in a FAST from the PathFinder:

1. Navigate to STYLE LIBRARIES > X/ibrary (e.g., Xnoto) > FASTs
PathFinder displays the FASTs in the List View that are available for
that font library.

2. Right-click a specific FAST.
PathFinder displays a pop-up menu.

3. Select View FAST.
PathFinder generates and displays the vix FAST name in the Sdeditor.

r F
Fle Edit View Insert Select Help
File Comment | =
|
[Table comment | 1
Font Name |Not03erif Variant Name /ReguT
| FAST Number [5e1 Units [1000 Range: Min [1q Max [186q
UNICODE CHAR ------- Bijs TR CHARACTER
NO. WIDTH CODE FONT# SLNT COMMENT
| |x20 |dz6e |de |01 <o <[variable_spa
[x21 |da32 |d33 |01 <@ <|exclamation
|x22 |daes |dz4 |01 <o <[double_prime
[x23 |dss9 |d3s |01 <@ <[number_sign
|x24 |dss9 |dz6 |so1 <@ 4|dollar
[x25 |dsoe |d37 |so1 <o <|percent
| |[x26 |d742 |d38 501 <l@ 4|ampersand .
View Comment Field Table 0 of 1 Rule 0 of 2887 Ad 1

Figure 11-4 Sample of FAST (VFX Spec) 00501—NotoSerif-Regular

Viewing Pseudo Characters in a FAST

If you modify any glyphs using a PSF Spec, GenFAST puts the
modifications into the FAST. You can view the relevant Unicode characters
with their modifications only by generating and viewing a View Pseudo

Creating and Viewing FASTs 11-9

Font Access Tables (FASTs)

FAST (VPX) Spec. You cannot see the modifications when viewing a View
FAST (VEX) Spec. Like the VFX (View FAST) Spec, you cannot edit this
View Pseudo FAST (VPX) Spec.

When you generate the VPX Spec from PathFinder, it does not remain on
the system; it only exists while you are viewing or printing it. You can
create a permanent VPX Spec by running the Viewpx program from the
command line on a FAST. For information on the Viewpx program, refer to
the XML Professional Publisher:|\Command Line Utilities or type the following
at the command line:

xyhelp viewpx
To view the pseudo characters in a FAST from PathFinder:

1. Follow steps 1-2 for viewing the regular characters in a FAST on the
previous page.

2. Select View Pseudo Characters from the pop-up menu.
PathFinder displays the vpx FAST name in the Sdeditor.

% post Master vpx 00030 |_ (O] x|
File Edit View Insert 3Select Help |
File Comment | &
Tahle Comment

Font Mame Times Variant Mame |R|:|man

FAST Mumbher [30 Units [1006 Range: Min [ig Max [186q

XCS CHAR CHARACTER

0. WIDTH COMMENT

E{[l)lﬁ() Jaeo1 Jff_ligature
ommands |<|::f 330><102><mh ; -65>C102>

Eﬁifﬁ |d81‘3 |ff i_ligature
ommands |(|::f 330><10Z2><mh ; —65><10Z><mh ;—60><105>

Eglﬁﬂl |d32‘3 |ff 1_ligature =
ommands |<|::f 330><102><mh ;-60><102><{mh;-50><108>

UiewComment Field Table O of 1 Rule 1 of 3 Flda 1

Figure 11-5 Sample of View Pseudo FAST (VPX Spec) 00030—Times Roman

11-10 Creating and Viewing FASTs Fonts

Listing All FASTs in a Font Library

Listing All FASTs in a Font Library

The font descriptor file contains a list of the FASTs, by name and number, that
are available in a specified font library. The file is located in the destination
(X) library. If the font_desc file does not already exist, listfx creates it.

Fonts

Enter the following commands at the command line to create or update the
font descriptor file in a specific library and view its contents:

1. Change to the Xlibrary directory where you want to create the file.

2. Enter the following command:

listfx —desc

This command creates or updates a file named font_desc.

To view the contents of the file, open it with an editor such as Wordpad.

The following example shows the font descriptor file for the noto library.
The pathname of the file is:

XYV_STYLES/Xnoto/font_desc

Table 11-1 Font Description File for the Xnoto Library

NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSansMono
NotoSansMono
NotoSansMono
NotoSansMono
NotoSansMono
NotoSansMono
NotoSansMono
NotoSansMono
NotoSansMono
NotoSans
NotoSans
NotoSans

Regular
Bold

Italic
BoldItalic
Medium
SemiBold
MediumItalic
SemiBoldItal
ExtraBold
ExtraBoldIta
Black
BlackItalic
ExtraLight
ExtraLightIt
Light
LightItalic
Thin
ThinItalic
Regular
Bold

Medium
SemiBold
ExtraBold
Black
ExtraLight
Light

Thin
Regular
Bold

Ttalic

00501
00502
00503
00504
00505
00506
00507
00508
00509
00510
00511
00512
00513
00514
00515
00516
00517
00518
00521
00522
00523
00524
00525
00526
00527
00528
00529
00551
00552
00553

Creating and Viewing FASTs

11-11

Listing All FASTs in a Font Library

Table 11-1 Font Description File for the Xnoto Library (Continued)

NotoSans
NotoSans
NotoSans
NotoSans
NotoSans
NotoSans
NotoSans
NotoSans
NotoSans
NotoSans
NotoSans
NotoSans
NotoSans
NotoSans
NotoSans
NotoSansArabic
NotoSansArabic
NotoSansArabic
NotoSansArabic
NotoSansArabic
NotoSansArabic
NotoSansArabic
NotoSansArabic
NotoSansArabic
NotoSansHebrew
NotoSansHebrew
NotoSansHebrew
NotoSansHebrew
NotoSansHebrew
NotoSansHebrew
NotoSansHebrew
NotoSansHebrew
NotoSansHebrew
NotoSansThai
NotoSansThai
NotoSansThai
NotoSansThai
NotoSansThai
NotoSansThai
NotoSansThai
NotoSansThai
NotoSansThai
NotoSansCJKhk
NotoSansCJKhk
NotoSansCJKhk
NotoSansCJKhk
NotoSansCJKhk
NotoSansCJKhk
NotoSansCJKhk
NotoSansCJKjp
NotoSansCJKJjp
NotoSansCJKJjp
NotoSansCJKjp
NotoSansCJKJjp
NotoSansCJKjp
NotoSansCJKJjp
NotoSansCJKkr
NotoSansCJKkr
NotoSansCJKkr

BoldItalic
Medium
SemiBold

MediumItalic
SemiBoldItal

ExtraBold

ExtraBoldIta

Black
BlackItalic
ExtraLight

ExtraLightIt

Light
LightItalic
Thin
ThinItalic
Regular
Bold
Medium
SemiBold
ExtraBold
Black
ExtraLight
Light

Thin
Regular
Bold
Medium
SemiBold
ExtraBold
Black
ExtraLight
Light

Thin
Regular
Bold
Medium
SemiBold
ExtraBold
Black
ExtraLight
Light

Thin
Regular
Bold
Medium
DemiLight
Black
Light

Thin
Regular
Bold
Medium
DemiLight
Black
Light

Thin
Regular
Bold
Medium

00554
00555
00556
00557
00558
00559
00560
00561
00562
00563
00564
00565
00566
00567
00568
00570
00571
00572
00573
00574
00575
00576
00577
00578
00580
00581
00582
00583
00584
00585
00586
00587
00588
00590
00591
00592
00593
00594
00595
00596
00597
00598
00600
00601
00602
00603
00606
00607
00608
00610
00611
00612
00613
00616
00617
00618
00620
00621
00622

11-12 Creating and Viewing FASTs

Fonts

Fonts

Listing All FASTs in a Font Library

Table 11-1 Font Description File for the Xnoto Library (Continued)

NotoSansCJKkr
NotoSansCJKkr
NotoSansCJKkr
NotoSansCJKkr
NotoSansCJKsc
NotoSansCJKsc
NotoSansCJKsc
NotoSansCJKsc
NotoSansCJKsc
NotoSansCJKsc
NotoSansCJKsc
NotoSansCJKtc
NotoSansCJKtc
NotoSansCJKtc
NotoSansCJKtc
NotoSansCJKtc
NotoSansCJKtc
NotoSansCJKtc
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSerif
NotoSansMono
NotoSansMono
NotoSansMono
NotoSansMono
NotoSansMono
NotoSansMono
NotoSansMono
NotoSansMono
NotoSansMono
NotoSans
NotoSans
NotoSans
NotoSans
NotoSans
NotoSans
NotoSans
NotoSans
NotoSans
NotoSans
NotoSans
NotoSans
NotoSans
NotoSans

DemiLight
Black

Light

Thin

Regular

Bold

Medium
DemiLight
Black

Light

Thin

Regular

Bold

Medium
DemiLight
Black

Light

Thin
Condensed
CondensedBol
CondensedIta
CondensedBol
CondensedMed
CondensedMed
CondensedSem
CondensedSem
CondensedExt
CondensedExt
CondensedBla
CondensedBla
CondensedExt
CondensedExt
CondensedLig
CondensedLig
CondensedThi
CondensedThi
Condensed
CondensedBol
CondensedMed
CondensedSem
CondensedExt
CondensedBla
CondensedExt
CondensedLig
CondensedThi
Condensed
CondensedBol
CondensedIta
CondensedBol
CondensedMed
CondensedMed
CondensedSem
CondensedSem
CondensedExt
CondensedExt
CondensedBla
CondensedBla
CondensedExt
CondensedExt

00623
00626
00627
00628
00630
00631
00632
00633
00636
00637
00638
00640
00641
00642
00643
00646
00647
00648
00701
00702
00703
00704
00705
00706
00707
00708
00709
00710
00711
00712
00713
00714
00715
00716
00717
00718
00721
00722
00723
00724
00725
00726
00727
00728
00729
00751
00752
00753
00754
00755
00756
00757
00758
00759
00760
00761
00762
00763
00764

Creating and Viewing FASTs

11-13

Listing All FASTs in a Font Library

Table 11-1 Font Description File for the Xnoto Library (Continued)

NotoSans
NotoSans
NotoSans
NotoSans
NotoSansSymbols
NotoSansSymbols
NotoSansSymbols
NotoSansSymbols
NotoSansSymbols
NotoSansSymbols
NotoSansSymbols
NotoSansSymbols
NotoSansSymbols
PiCharacters
XPPOne

XPPTwo

CondensedLig
CondensedLig
CondensedThi
CondensedThi
Regular

Bold

Medium
SemiBold
ExtraBold
Black
ExtraLight
Light

Thin
XPPOne&Two
Roman

Roman

00765
00766
00767
00768
10001
10002
10003
10004
10005
10006
10007
10008
10009
30020
30021
30022

Note: The font descriptor file lists FAST numbers, not font numbers.

11-14 Creating and Viewing FASTs

Fonts

Verifying Correct Widths in FASTs

Verifying Correct Widths in FASTs

Fonts

XPP delivers a font width test utility, fwtest.pl, that tests FASTs for correct
widths. This utility creates and composes a division for each FAST. Each
division contains all glyphs in the FAST in order, according to the Unicode
number. You can determine whether any font width errors exist by viewing
the division.

Before Running the Font Width Test Utility

If you need a list of all the FASTs that are available for a specific font library,
print the font_desc file. Information for running and locating the file is on
page 11-11.

Running the Font Width Test Utility on a Single FAST

To run the font width utility on a single FAST:

1. Navigate to STYLE LIBRARIES > Xlibrary (e.g., Xnoto) > FASTs
PathFinder displays the FASTs in the List View that are available for
that font library.

2. Right-click a specific FAST.
PathFinder displays a pop-up menu.

3. Select Width Test.
The Font Width utility displays a Font Width Test pop-up list box with
the specific FAST already selected.

4. Click the Cancel button to cancel the test.
Click the OK button to continue the font width test.
The Font Width utility displays the following message:
Automatically overwrite Division(s)?

5. Click the Cancel button to cancel the test.
Click the Yes button to continue the font width test.
Click the No button to continue the font width test. If the output
division already exists PathFinder will display a prompt asking to
replace the output division or not.
The font width utility displays the following messages:

Please wait...processing fontname.
Width test completed

followed by the location of the division. (Each division is listed as

Creating and Viewing FASTs 11-15

Verifying Correct Widths in FASTs

DIV _fontnumber under the first document root handle, then

CLS_xpputils/GRP_fwtest/JOB_libraryname.)

Do you wish to examine?

Click the No button.
The information remains in that location for you to examine at another

time.

Click the Yes button.
XPP displays the division in the XyView.

Figure 11-6

¥LIB:nota TAST: 0d501

#m“ﬂ:
Fressepery

G B e B Bl e

LICLLLS
WL

L1y

i
0 R0 DL
IRSRRERELE

robrurarrr |

Ekcccckcel
A4l
SERERSAEE
G G |

e
L

e e e e
ol A
AT T
AL
BEEEREERER.
LUl
DODDODDDT
ELEEEELEE
FITFTTITT.

GGGGLGEGEGG
HHHHHHHHH,

DESC: NatoSeril Regular

aansaans s |H
bhbhbhbbh |H
oo H
ddddddddd |H

e mmenee | H
TR H
3t

{1

i1

Kk bR |
mmm{H
e o H
nnnmnnnnnH

oo asnona| H
rrpppppp H
g H
rrrrrr
semme]
ittt |1
ETETRTRTETITRTR TR
v]
wnww v T
Exxxxxxxk |]
¥yl
ITTTIRITT

(L

41

fiiniia!
soecoree|H
ERprreces H

sannooana

VT H
Eeeisedn

Sample section of the font width test on NotoSerif-Regular (00501)

11-16 ~ Creating and Viewing FASTs

Fonts

Verifying Correct Widths in FASTs

Running the Font Width Test on Multiple FASTs

You can run the Font Width utility on multiple FASTs using the command
line or using PathFinder.

Using the Command Line

From the command line, the fwtest.pl script uses the name of the Xlibrary as
the argument.

To process multiple FASTs from the command line:
1. Enter the following command at the prompt:

e UNIX:

$XYV_EXECS/procs/sc/fwtest.pl $XYV_STYLES/Xlibrary
¢ Windows:

perl %XYV_EXECS% \procs\sc\fwtest.pl

perl %XYV_STYLES%\Xlibrary

The Font Width utility displays a Font Width Test pop-up list box
containing the FAST numbers for that library.

2. Select the FASTs on which you want to run the font width test and
click the OK button.

To select continguous numbers, select the first FAST, press the Shift
key, select the last FAST.

To select non-contiguous FASTS, select the first FAST, press and hold
the Control key, select the remaining FASTs.

The Font Width utility displays a message box asking if you want to
overwrite the existing division(s).

3. Click the yes button.

The Font Width utility displays a processing message box.

The Font Width Utility displays a message box containing the location
of the divisions.

The location is always CLS_xpputils/GRP_fwtest/JOB_libraryname
(without the X prefix).

Fonts Creating and Viewing FASTs 11-17

Verifying Correct Widths in FASTs

Using PathFinder

The process of running the Font Width utility on multiple FASTs is similar
to running the Font Width utility on a single FAST. Refer to page 11-15.

To run the Font Width utility on multiple FASTs from PathFinder:

1. Follow steps 1-3 on page 11-15.
The Font Width utility displays a Font Width Test pop-up list box
containing the FAST numbers for that library with the specific FAST
already selected.

2. Select the other FASTs on which you want to run the font width test
and click the OK button.

To select continguous numbers, select the first FAST, press the Shift
key, select the last FAST.

To select non-contiguous FASTs, select the first FAST, press and hold
the Control key, select the remaining FASTs.

The Font Width utility displays a message box asking if you want to
overwrite the existing division(s).

3. Click the yes button.

The Font Width utility displays a processing message box.
The Font Width Utility displays a message box containing the location
of the divisions.

The location is always CLS_xpputils/GRP_fwtest/JOB_libraryname
(without the X prefix).

Correcting Width Errors

Once you have run the font width test utility, you can determine if there are
any glyphs with width errors by looking at the period and the letter H at
the end of each line. Refer to Figure 11-6. They should line up with the
reference periods and H’s at the top and bottom of each page. The vertical
lines are for reference only, to make it easier to spot any errors.

If the periods and Capital H's are offset to the left, the width in the PTS
Spec is too high. Conversely, if the periods and capital H’s are offset to the
right the width in the PTS Spec is too low.

To determine which PTS Spec to edit, do the following:

® Text FASTs: The PTS Spec usually has the same number as the FAST. If
the number is different follow the procedure for Pi FASTs.

® Pi FASTs: Since Pi FASTs usually contain glyphs from several fonts, do
the following:

11-18 Creating and Viewing FASTs Fonts

Fonts

Verifying Correct Widths in FASTs

1. View the FAST using the following sequence:
STYLE LIBRARIES > Xlibrary > FASTs > FAST number > View FAST
Viewing the FAST allows you to determine from which font a
particular glyph is coming; therefore, which PTS Spec to edit.

2. Once the FAST is open, search for the Unicode number that
corresponds to the glyph. (The Unicode number is the first column
in the FAST.) Note the number in the PTS Font # field; this is the PTS
Spec you need to edit. (The PTS Font # field contains an entry greater
than 32767 for modified glyphs, e.g., pseudofont characters).

To correct the error:

1.
2.

Measure the amount of offset in the division.

Locate the PTS Spec.
(STYLE LIBRARIES > Llibrary > Phototypesetter Specs > pts_font Spec)

Search for the Unicode Number you need to edit.

Change the value in the Char Width field, using the following
conversion:
All PostScript devices: 1 point = 10 PTS units

Run GenFAST on all related FASTS.
(STYLE LIBRARIES > Llibrary > FAST Generation > FAST number >
Tools > Generate FAST)

Recompose the fwtest division. (You do not have to recreate the
division unless you add new glyphs to the FAST.)

Creating and Viewing FASTs 11-19

Verifying Correct Widths in FASTs

11-20 Creating and Viewing FASTs Fonts

Chapter 12

The Font Variant Spec (FV)

This chapter contains the following information on the Font Variant (FV)
Spec:

¢ Understanding the FV Spec
® Setting up an FV Spec

Fonts The Font Variant Spec (FV) 12-1

Understanding the FV Spec

Understanding the FV Spec

The Font Variant (FV) Spec maps the fonts specified in the Item Format (IF)
Spec tags or CSS Spec font properties or Font Family (ff) and Font Variant
(fv) XyMacros to the Font Access Tables (FASTSs).

Using the rules in the FV Spec, you do the following:

Define font families.
For example, you may define font family 0 as NotoSerif, font family 1
as NotoSans, and so on.

Define the variants for each family.

For example, you may have sixteen rules for the NotoSerif font, each
defining a different variant — Regular, Bold, Italic, Bold Italic,
Medium, SemiBold, Medium Italic, SemiBold Italic, ExtraBold,
ExtraBold Italic, Black, Black Italic, ExtraLight, ExtraLight Italic, Light,
and Light Italic.

Specify the point size range for each family and variant.

Specify the Primary FAST associated with each of these font families
and variants.

Specify the Secondary FAST and Default FAST associated with each of
these font families and variants (optional).

Specify a Kerning Pair (KP) file (optional).
Set up kerning tracks (optional).
Specify percentages for the height of small caps and ascenders.

Specify entries in the Ligature/Accent Replacement (RP) Spec
(optional).

Once you have set up a Font Variant Spec, you can specify the font families
and variants in the Family and Variant fields in the Item Format Spec or use
them as arguments in XyMacros. For CSS-XML mode, instead of the Item
Format Spec fields you determine the font families and variants with font
properties in the CSS Spec.

12-2 The Font Variant Spec (FV) Fonts

Understanding the FV Spec

For anything other than CSS-XML mode, the following table shows the
relationship between the Item Format Spec, Font Variant Spec and FASTs,
and explains how the system processes each of them during composition.

Table 12-1 How Composition Obtains Character Info (Non-CSS-XML Mode)

textM The system processes the text as character codes. For example, the CHAR CODE for the
Sample Text letter T is 84.

\J

Font Family It checks the Item Format Spec for the [{text)] tag and gets the Font Family and Font
Font Variant Variant specified there (or from the current ff and fo XyMacros or other XyMacros

IF Spec that change the Family and Variant). For example, the [{text)) tag specifies Family 0,
Variant 0.

eI

Font Family The system checks the Font Variant Spec specified in the Job Ticket for a rule

Font Variant matching the Family and Variant for the current point size. For example, it finds the
Vs rule with Font Family 0 and Font Variant 0. It then checks the following fields in that
e
® Small Caps FAST
® Primary FAST
® Secondary FAST
® Default FAST
Small Caps If the character is in case mode 1 (small caps—{{em;1)] XyMacro), composition uses
FAST the FAST specified in the Small Caps FAST field (if any).
XS If the Small Caps FAST field contains primary, it uses the FAST specified in the Primary
pec FAST field.

If the the Small Caps FAST field contains algorithm, composition calculates the size of
small capital letters based on the entry in the Normal Small Caps Size % or Smallcap Size %
fields. (The later overrides the former if numeric values are present.)

) I

Primary FAST Composition searches the Primary FAST for a rule with the character code. For
FXS example, if 11 is the value in the Primary FAST field, composition searches FAST Spec
pec 11 for CHAR CODE 84. If it finds the rule, it uses the character information; otherwise,
it goes to the Secondary FAST field to determine the Secondary FAST number (if any).

eI

Secondary It searches the Secondary FAST (if any) for a rule with the character code. For
FAST example, if 10006 is the value in the Secondary FAST field, composition searches FAST
XS Spec 10006 for CHAR CODE 84. 1f it finds the rule, it uses the character information;
pec otherwise, it goes to the Default FAST field to determine the Default FAST number (if

any).

eI

Default FAST It searches the Default FAST Spec (if any) for a rule with the character code. For
XS example, if 10001 is the value in the Default FAST field, composition searches FAST

pec Spec 10001 for CHAR CODE 84. If it finds the rule, it uses the character information;
otherwise, it outputs the following message:

<_I

“Unspecified XPP displays this message if it cannot find CHAR CODE 84. Use the Find Errors option to
Typesetter obtain more information. Use the View Log option to obtain the character code for the
Character” character.

Fonts The Font Variant Spec (FV) 12-3

Understanding the FV Spec

For CSS-XML mode, the following figure shows the relationship between
the CSS Spec, Typesetter Font Map (TSF) Spec, Font Variant Spec, and
FASTs and explains how the system processes each of them during

composition.

Table 12-2 How Composition Obtains Character Info (CSS-XML Mode)

text
Sample Text

\J

CSS Spec
font-family
font-weight

font-style

\J

TSF Spec
font-family
font-weight

font-style

\J

FV Spec
Primary
FAST
-or-
Font Family
Font Variant

\J

Small Caps
FAST

FX Spec

<_I

Primary FAST
FX Spec

eI

Secondary
FAST

FX Spec

eI

Default FAST
FX Spec

eI

“Unspecified
Typesetter
Character”

The system processes the text as character codes. For example, the CHAR CODE for the letter T is
84.

It checks the CSS Spec for the [{text)] element’s font-family, font-weight and font-style

properties. It attempts to match these values in the CSS fields in the TSF Spec. Any ff
or fv override XyMacros or other XyMacros that change the Family and Variant, will
directly determine the FV Spec that gets used.

The stystem checks the TSF Spec for the rule with the best match for the combination of the
font-family, font-weight, and font-style ﬁroperties and then uses the Font Map Number in that
rule as the Primary FAST to lookup in the Font Variant Spec.

The system checks the FV Spec for the first rule matching that Primary FAST to determine the
FF and FV values to use. For example, it finds the rule with Font Family 0 and Font Variant 0.
If any override XyMacros that change the FF and FV are used in the CSS Spec, they will
directly determine the FV Spec rule that is used. It then checks the following fields in that rule:
Sma?ll Caps FAST

Primary FAST

Secondary FAST

Default FAST

If the character is in case mode 1 (small caps—{{em;1}] XyMacro), composition uses the FAST
specified in the Small Caps FAST field (if an l; If the Small gaps FAST field contains primary, it
uses the FAST specified in the Primary FAST field. If the the Small Caps FAST field contains
algorithm, composition calculates the size of small capital letters based on the entry in the
Normal Small Caps Size % or Smallcap Size % fields. (The later overrides the former if numeric
values are present.)

Composition searches the Primary FAST for a rule with the character code. For example, if 11
is the value in the Primary FAST field, composition searches FAST Spec 11 for CHAR CODE 84. If it
finds the rule, it uses the character information; otherwise, it goes to the Secondary FAST field to
determine the Secondary FAST number (if any).

It searches the Secondary FAST (if any) for a rule with the character code. For example, if 10006
is the value in the Secondary FAST field, composition searches FAST Spec 10006 for CHAR CODE
84. If it finds the rule, it uses the character information; otherwise, it goes to the Default FAST
field to determine the Default FAST number (if any).

It searches the Default FAST Spec (if any) for a rule with the character code. For example, if
10001 is the value in the Default FAST field, composition searches FAST Spec 10001 for CPHAR
CODE 84. If it finds the rule, it uses the character information; otherwise, it outputs the
following message:

XPP displays this message if it cannot find CHAR CODE 84. Use the Find Errors option to obtain
more information. Use the View Log option to obtain the character code for the character.

12-4 The Font Variant Spec (FV) Fonts

Understanding the FV Spec

Note: When you run GenFAST, the utility creates a FAST, an FX file. You cannot
view an FX file directly; you can create and view a VFX Spec and a VPX Spec
from a FAST in the X1ibrary.

Specifying an FV Spec

Specify the FV Spec in the Job Ticket or Division Ticket. The FV Spec may
exist either in the Spec Library (also called the Style Library) named in the Job
Ticket or at the job level.

When to Edit an FV Spec

Typically, Build FAST sets up an FV Spec in a font Llibrary when you set up
fonts on your system. You must move or copy this spec, or the most
recently added rule(s) from this spec, to the job level FV Spec or to the
library level FV Spec in the library that is specified as the Spec Library. Once
you set up a Font Variant Spec, you do not need to edit it again unless one
of the following conditions exits:

® You install additional fonts.
In this case, run Build FAST. The utility modifies the FV Spec in the
font Llibrary to include the new FASTs. Copy those new rules to the
active FV Spec for the affected jobs.

® You are using different FV Specs for different jobs.
In some jobs, font family 0 might be NotoSerif and in other jobs, it
might be NotoSansArabic. Edit the FV Specs to specify the desired
family as font family 0, font family 1, and so on.

Set up multiple FV Specs only if you have several hundred fonts on
your system. In that case, you can group fonts together that are used
for certain types of jobs.

Note: Every FV Spec must contain a rule defining font family 0 and font variant 0
in a range that includes a size of 13 points to display the line “Uncomposed text in
Xywvision Standard Format” in an uncomposed page or division. Without this rule,
you cannot edit or view a division.

If you try to edit a division, the system displays the message “Variant 0, family 0,
size 13; Missing FAST or FFVAR entry. Font family 0, variant O must be defined
in your Font Variant Spec.”

Fonts The Font Variant Spec (FV) 12-5

Setting Up an FV Spec

Setting Up an FV Spec

When you add fonts to your system using Build FAST, the utility sets up the
FV Spec automatically in the source font library (Llibrary). Since XPP looks
for the FV Spec in the job or Spec Library (or Style), you need to copy the
rules from the FV Spec that was generated by Build FAST in the source font
library to the active FV Spec.

If you need to edit the FV Spec manually, gather the following information:

Units — the number of units assigned per em space (usually 1000 for
PostScript devices).

FAST numbers — the numbers of the FASTs on your system that you
want to use.

Smallcaps FAST numbers — the numbers of the FASTs (if any)
containing the small capital letters for the font family/variant range
(optional).

Font family numbers — decide which numbers you want to assign to
font families.

Font variant numbers — decide which numbers you want to assign to
font variants.

Point size range — the minimum and maximum point sizes of your
output device. (XPP supports a maximum of 186.1 points for
PostScript output.)

Kerning Pair (KP) file name — the name of any KP file you may want
to use (optional).

Characters or accents to replace — any character combinations you
want replaced with ligatures or any accents you want replaced. You
specify Accent and ligature replacement in the Ligature/Accent
Replacement (RP) Spec (optional).

Naming an FV Spec

The Build FAST utility names the FV Spec in the source font library using
the _fv_ prefix followed by the name you enter in the Font Variant Spec Name
tield of the Build FAST dialog box. The default name in this field is xybuilt.

When creating an FV Spec in the job or Spec Library, you assign it a name
consisting of the _fv_ prefix followed by a maximum of eight alphanumeric
characters, for example, fv_doc.sde or _fv_noto.sde. The FV Specs can exist
at both the Spec Library and job levels. Composition does not recognize the
FV Spec in the source font library (unless that library is also the designated
Spec Library).

12-6 The Font Variant Spec (FV) Fonts

Fonts

Setting Up an FV Spec

Accessing an FV Spec

Access FV Specs from PathFinder using the following sequence:
STYLE LIBRARIES > Llibrary > Font Variants > Specific Font Variant Spec

Structure of an FV Spec

An FV Spec consists of a File Comment and one table with the following
sections:

® Header — contains global entries for the spec

® Rules — contain information about each family and variant defined

The following figure shows the structure of the FV Spec.

B noto/ Master fv noto

- X

file Edit View Insert Select Help

File Comment |Noto Font Variant File - Created Sun May 14 08:30:42 2023 = User-provided information about this Spec.
Header fields containing global information

Typesetter Minimum Size Increment |0.25q Normal Small Caps Size % ’E T for the Spec.

|Kerning Units per Em 1000 Normal Ascender Height % |67

Comment [Noto Serif Regular

Font Family Kerning Data

Font variant Primary FAST 501 Pairs File [p0501
Range Minimum q Secondary FAST 10001 Track #1
Range Maximum Default FAST 600 Track #2

Rules defining each font family and
variant, and information such as the
FASTs containing the character

[information.

Note that the rules define different
variants of the same family.

Smallcap Size % |normal< Small Caps FAST algorithm < Track #3
| Asc Height % Lig/Accent Replace [all 4 Track #4

1
7T

Comment |Noto Serif Bo.
Font Family

=4
=%

Kerning Data

Font Variant Primary FAST 502 Pairs File (00502
Range Minimum Secondary FAST 10002 Track #1

Range Maximum Default FAST 601 Track #2

Smallcap Size % |normal+ Small Caps FAST algorithm 4 Track #3
| Asc Height % Lig/Accent Replace |all < Track #4

Ins Comment Field Table 0 of 1 Rule 0 of 165 Fd 1

i

T

Figure 12-1 Font Variant Spec

The Font Variant Spec (FV) 12-7

Setting Up an FV Spec

Header Fields

The entries in the header fields are global entries for the spec; you can
override entries in these fields if there is a corresponding rule field.

Typesetter Minimum Size Increment

The minimum increment by which your output device can increase or
decrease type size. The minimum increment on some typesetters is 1q;
others can adjust point sizes by units such as 0.1q. For example, with an
increment of 0.1q, you can adjust the point size from 9q to 8.9q or 9.1q.

Entry Description

number A positive numeric value followed by a valid unit qualifier.
This field entry defaults to 1q.

Kerning Units per Em
The entry in this field determines the value of a kerning unit.

To calculate the value of a kerning unit, the system divides the value in this
tield by the number of units assigned per em space (PostScript devices are
usually 1000 per em.)

You can enter a value in this field that makes the kerning units per em
space a relatively small or large number. This gives you extremely fine
control.

For example, your output device uses 1000 units per em space and you
want 10 kerning units per typesetter unit. Enter 10000 in this field (1000 x
10).

Refer to the description of the Keming Data Track #1 - #4 tields.

Entry Description

integer An integer in the range of 1 through 65535. This value
divides an em space into kerning units. This field entry
defaults to 1000.

Normal Small Caps Size %

In the absence of having an actual small caps font, this field allows you to
set up XPP to mimic small caps. Using the value in this field, XPP calculates
the height of small capital letters as a percentage of the height of capital
letters. For example, using the default entry of 67, XPP generates small
capital letters that are 67% the size of the ascender height of capital letters.

12-8 The Font Variant Spec (FV) Fonts

Setting Up an FV Spec

XPP uses this field only if the Small Caps FAST field contains the entry
algorithm. It does not use this field if the Small Caps FAST field contains a
FAST number or the entry primary.

Entry Description

integer An integer in the range of 1 through 99. This field entry
defaults to 67.

THIS 1S AN EXAMPLE OF SMALL CAPS

THIS B AN EXAMPLE OF UFPER. CASE LETTERS IN STANDARD FOMT
SIZE

this is an example of lower casa letters in standard font siee.

This s an example of letters in standard font size using a mix of upper and
lower case letters,

Figure 12-2 Font size comparison of Small Caps, Upper case, Lower case, and Mixed
case letters

Normal Ascender Height %

Fonts

Using the entry in this field, the system calculates the percentage of the font
height taken up by the ascender. The descender takes up the remaining
percentage.

An ascender is the part of the glyph that extends above the baseline. The
descender is the part of the glyph that extends below the baseline. For
example, using the default entry of 67, the ascender height is 67% of the
font height and the descender height is 33% of the font height.

In the Item Format Spec, if the Ascender Lead or Descender Lead fields
contain the entry normal, XPP uses this field to determine the leading. In
CSS-XML mode, the same is true for the corresponding -xpp-ascender-
lead and -xpp-descender-lead CSS properties if they are set to
normal.

Entry Description
integer An integer in the range of 0 through 100. This field defaults
to 67.

If the values in the Ascender Lead and Descender Lead fields in
the Item Format Spec, or the -xpp-ascender-1lead and
-xpp-descender-1lead properties in the CSS Spec, do not
correspond to the percentage entered in this field, XPP does
not position the glyph correctly relative to the baseline.

The Font Variant Spec (FV) 12-9

Setting Up an FV Spec

Comment

Font Family

Rule Fields

The FV Spec contains a rule for each font family and font variant. While
XPP allows you to have multiple rules specifying the different point sizes of
the same family and variant in the FV Spec, this option is seldom used due
to the standard PostScript environment.

Information such as the font family and variant names. For example,
NotoSerif Regular.

Entry Description

string Characters consisting of as many as 7 lines of alphanumeric
characters, including uppercase and lowercase characters,
spaces, symbols (such as $, &, /), and integers 0-9.

A number that identifies the font family. The XPP XyMacros Spec (xy_sys in
syslib) maps the Main Font Family to font family 0 and the Alternate Font
Family to font family 1, using the (main) and (alt) XyMacros respectively.
Also, the Main key is mapped to font family 0 and the Alt key is mapped to
font family 1. Therefore, it is recommended that you assign your most
frequently used font families to 0 and 1.

When you press [Main] or manually insert the main XyMacro, the font
changes to font family 0. When you press [Alt] or manually insert the alt
XyMacro, the font changes to font family 1.

Entry Description
integer An integer in the range of 0 through 2047.
0 Specifies font family (default = 0).

Accessed by the key cap Alt/Main.
Mapped to the Main Font Family (main) XyMacro
primitive /f0".

1 Specifies font family 1.
Accessed by the key cap Shift + Alt/Main.
Mapped to the Alternate Font Family (alt) XyMacro
primitive /ff;1.

2-2047 Other valid font family values.

The system first uses the %inmath system variable to check if it is in math.
In math, different font family and font variant numbers may be used.

12-10 The Font Variant Spec (FV) Fonts

Setting Up an FV Spec

Font Variant

A number that identifies the font variant. The XPP XyMacros Spec maps the
variants 0 through 5 to typeface styles. Some keys access these macros. For
example, when you press the Ital/Med key or manually insert the Medium
Style (med) XyMacro, the variant changes to 0.

Entry Description
integer An integer in the range of 0 through 255.
0 Specifies font variant 0 (default).

Accessed by key cap Ital/Med.
Mapped to the Medium Style (imed) XyMacro
primitive /fv;0".

1 Specifies font variant 1.
Accessed by key cap Ital/Bold.
Mapped to the Bold Style (bold) XyMacro
primitive /fo;1".

2 Specifies font variant 2.
Accessed by key cap Shift + Ital/Med.
Mapped to the Medium Italic Style (mdit) XyMacro
primitive /fv;2".

3 Specifies font variant 3.
Accessed by key cap Shift + Ital/Bold.
Mapped to the Bold Style Italic (bdit) XyMacro
primitive /fv;3".

4 Specifies font variant 4.
Accessed by key cap Ital/Lite.
Mapped to the Light Style (lite) XyMacro
primitive /fo;4".

5 Specifies font variant 5.
Accessed by key cap Shift + Ital/Lite.
Mapped to the Light Italic Style (/tit) XyMacro
primitive /fv;5.

6-255 Other valid font variant values.

The system first uses the %inmath system variable to check if it is in math.
In math, different font family and font variant numbers may be used.

Fonts The Font Variant Spec (FV) 12-11

Setting Up an FV Spec

Range Minimum/ Range Maximum

The smallest (min. 4.5q) and/or largest (max. 186.1q) point size available for
this font on your output device. (Technically, you can specify a smaller
point size, but some things having to do with pickup placement and/or
leading may not work properly.) The range must also be equal to or within
the range specified in the FAST Generation (FGS) Spec. Having multiple
rules specifying different point sizes is seldom used.

Entry Description

number A positive numeric value, followed by a valid unit qualifier,
in the range of 0 through 186.1q or the equivalent in p, i, m,
n, ¢, d, k units. The Range Minimum field entry defaults to
1qg, however, the minimum point size that XPP can output is
4.5q. (Technically, you can specify a smaller point size, but
some things having to do with pickup placement and/or
leading may not work properly.)The Range Maximum field
entry defaults to 186.1q.

Smallcap Size %

This field overrides the Normal Small Caps Size % header field.
The value in this field applies only to the glyphs in the variant defined in

this rule.

Entry Description

normal Size of a small capital letter in relation to a capital letter
based on the information in the FAST.

integer A one- or two-digit number ranging from 1 to 99. This

represents a percent of the large cap size.

Asc Height %

This field overrides the Normal Ascender Height % header field.
The value in this field applies only to the glyphs in the variant defined in

this rule.

Entry Description

normal The ascender/descender ratio of height for a rule. normal
uses header field Normal ASC Height %.

integer A one- or two-digit number ranging from 1-99. This
represents a percent of the ascender/descender ratio of
height for a rule.

12-12 The Font Variant Spec (FV) Fonts

Setting Up an FV Spec

Primary FAST

The number you have assigned to this font (usually a text font).

Entry Description

integer A five-digit number in the range of 0 to 32767. This field
entry defaults to 0.

Secondary FAST

Default FAST

The number of the secondary FAST to supplement glyphs in the primary
(text) FAST. This FAST usually contains symbols and Pi characters.

Refer to “The FAST Generation Spec (FGS)”, page 9-6, for recommended
naming conventions for Pi FASTs.

Entry Description

integer A five-digit number in the range of 0 to 32767. This field
entry defaults to 0.

The number of the third FAST (if any) you want the system to check for the
glyph information. This may be a catch-all FAST containing glyphs from all
of your fonts.

Entry Description

integer A five-digit number in the range of 0 to 32767. This field
entry defaults to 0.

Small Caps FAST

Fonts

If there is no Small Caps FAST for this font family, algorithm is entered in
the field. This specifies for the system to use a formula to produce small
capital letters based on the values entered in the Normal Small Caps Size % or
Smallcap Size % fields. (The system does not use these fields if the Small Caps
FAST field contains a FAST number or the entry primary.)

If there is a small caps FAST for this font family, you enter that FAST
number in this field.

If the primary FAST in this FV Spec rule is a small caps FAST, you enter
primary in this field.

Entry Description

algorithm Specifies using a formula to calculate the size of small capital
letters (default).

The Font Variant Spec (FV) 12-13

Setting Up an FV Spec

Entry Description

integer A five-digit number in the range of 0 to 32767. This field
entry defaults to 0.

primary Specifies using the FAST in the Primary FAST field.

Ligature/Accent Replacement

The entry in this field specifies whether to replace accents and use ligatures
for characters in this font.

In the Ligature/Accent Replacement Spec, you specify the characters you
want to replace and the character that you want to use to replace them.
During composition, XPP matches the entry in this field to the entry in the
Ligature Mask rule field(s) in the Ligature/Accent Replacement Spec. Refer
to“The Ligature/Accent Replacement Spec”| on page 16-1 for more
information.

If you enter an integer that has a corresponding alphabetic entry (i.e., 1 for
ffl, 2 for ffi, and so on), the integer changes to the corresponding alphabetic
entry when you exit the field. For example, if you enter 31, the integer
changes to all (meaning replace all ligatures) when you exit the field.

If you enter an integer that does not have a corresponding alphabetic entry
(i.e.,, 17, 64, 95, and so on), the integer does not change when you exit the
field.

Use the integer entries to create special combinations that you could not
otherwise enter in the field. For example, you want to replace only the
character combinations f f 1 and f 1 with the corresponding ligatures, but
that is not a valid entry in this field. Add the integer entry for ffl (1) to the
integer entry for fl (16). Enter 17 in the Ligature/Accent Replacement field.

The following alphabetic entries (i.e., none, ffl, and so on) are available
with the Next Choice, Prev Choice menu options.

Entry Description

integer A positive integer in the range 0 through (2)** to represent
alphabetic equivalents. The integers that have defined
character replacements are shown in the following list.
Wherever possible, XPP replaces the integer entry with the

alphabetic entry when you exit the field.

string An alphabetic string for the character replacement. The
following is a list of the defined strings.

Defined String Integer Specifies

none 0 No ligature or accent replacement (default)

ffl 1 Replacing ffl with the ffl ligature

12-14 The Font Variant Spec (FV) Fonts

Setting Up an FV Spec

Defined String Integer Specifies

ffi 2 Replacing ffi with the ffi ligature

fi 4 Replacing fi with the fi ligature

ff 8 Replacing ff with the ff ligature

fl 16 Replacing fl with the fl ligature

fifl 20 Replacing fi and fl with the fi and fl ligature

all 31 Replacing any ligature character combination (ffl, ffi, fi,

ff, fl) with the corresponding ligature.

accents 32 Replacing accents only
(for FASTs with uppercase and lowercase accents).

both 63 Replacing both ligatures (31) and accents (32)
(for FASTs with uppercase and lowercase accents).

NA? 64 Replacing accents using the Accents (acm) XyMacro
P g g y
(for FASTs with lowercase accents only).

NA' 84 Replacing accents, using acm (64) and fi and fl
ligatures (20)

(for FASTs with lowercase accents only).

NA' 95 Replacing accents, using acm (64) and all ligatures (31)

(for FASTs with lowercase accents only).

'NA = Not Available. This integer does not have a corresponding string entry.

Kerning Data: Pairs File

Fonts

The name or number of the Kerning Pair file (if any) for the system to use in
kerning characters in this font family /variant and size range. The Kerning
Pair file must be in the pair kerning library (Klibrary-name) of the same name
as the font library (Xlibrary-name). The system checks the file for matching
kerning pairs for every character in a division.

For example, in a Kerning Pair file, you specify the amount of space to add
or subtract between a capital “A” and a capital “W.” You enter the name of
the Kerning Pair file in this field.

When the system finds the capital “A” followed by a capital “W” in the
division, it searches the Kerning Pair file for a capital “A” with capital “W".
It finds the rule in which you have specified kerning and kerns the spacing
between the “A” and the “W.”

Entry Description
string An alphabetic string up to eight characters long.
no entry Specifies not to use a Kerning Pairs file (default.)

The Font Variant Spec (FV) 12-15

Setting Up an FV Spec

Kerning Data Track #1 - #4

A value specifying positive or negative track kerning. Positive values add
white space between each pair of glyphs; negative values remove white
space between each pair of glyphs. The entries in the Track field are based on
relative kerning units (refer to the description of the Kerning Units per Em
field).

RWS recommends entering 0 in the field for Track #1 so you can easily turn
track kerning off in Item Format rules or with the -xpp-kerning-track
property in the CSS Spec.

Specify the desired kerning track values in the Font Variant Spec; this
allows you to kern glyphs in text of different point sizes by varying degrees.
For example, you may want to reduce the amount of white space between
pairs of glyphs in a large point size used for heads, but not in the point size
used for main text. You can also specify the kerning track using the Track
Kerning (tk) XyMacro or corresponding CSS property.

If you specify track kerning in the Item Format Spec or with the -xpp-
kerning-track property in the CSS Spec and you name a Kerning Pairs
file in the Font Variant Spec, the system kerns pairs of glyphs in the Kerning
Pairs file by the sum of the two values. If you intend to use both track
kerning and the Kerning Pairs file, set up track kerning first.

To calculate the entry for the Track field:

1. Determine the value of a kerning unit by dividing the entry in the
Kerning Units per Em field by the number of units the typesetter assigns
per em.

2. Multiply the value of a kerning unit by the number of units of white
space adjustment you want between each pair of glyphs.

3. Enter this value in the Track field.

For example, the typesetter assigns 1000 units per em. If the Kerning Units per
Em field contains the entry 1000, the value of one kerning unit is 1. To
specify removing 10 relative units of white space between pairs of glyphs,
enter -10 in this field.

Entry Description

integer A number in the range of -32767 through 32767. A positive
integer specifies adding white space between all pairs of
glyphs; a negative integer specifies removing white space
between all pairs of glyphs.

0 Specifies no white space adjustment. The following list
shows the entries for the Track fields for the desired number
of relative units for a 1000-unit typesetter based on 10,000
kerning units per em.

12-16 The Font Variant Spec (FV) Fonts

Setting Up an FV Spec

Track Field Entries for Relative Units (10,000 kerning units per em)

Relative Units 1000-Unit Typesetter
10 100

20 200

30 300

100 1000

Fonts The Font Variant Spec (FV) 12-17

Setting Up an FV Spec

12-18 The Font Variant Spec (FV) Fonts

Chapter 13

The Typesetter Font Map
Spec (TSF)

This chapter contains the following information on the Typesetter Font Map
(TSF) Spec:

¢ Understanding the TSF Spec
® Setting up a TSF Spec

Fonts The Typesetter Font Map Spec (TSF) 13-1

Understanding the TSF Spec

Understanding the TSF Spec

Outputting fonts on PostScript devices requires calling their fonts by their
PostScript names. Using a Typesetter Font Map (TSF) Spec, you map the
XPP font numbers to the PostScript font name to the so XPP can output and
display the font.

Build FAST and GenFAST do not use the TSF Spec information to create a
Font Access Table (FAST), but Build FAST updates the TSF Spec.

When do I Need a TSF Spec?

You need to a TSF Spec because the output devices and PostScript/PDF
output files access fonts by name rather than by XPP font number.

For example, PostScript devices and files identify fonts by name; however,
internally XPP identifies fonts by number. Edit the TSF Spec to map each
font number to a PostScript font name so XPP can output the fonts.

If you create a TSF Spec, you must include all the fonts on your system that
are going to be used with the font library that contains the TSF Spec. You
can only display and output the fonts you have included in the TSF Spec. If
you try to output using a font that is not in the TSF Spec, XPP reports the
following message during display and output:

“ERROR: No mapping for font number #”

Naming the TSF Spec

The name of the TSF Spec is _tsf_system.sde. No other names are valid.
Note that you can use other names while you are developing all your
mappings, but then you must copy the necessary rules from that spec into
_tsf_system.sde in order for XPP to find and use them.

How XPP Uses the TSF Spec

Using the following lookup procedure:

1. XPP checks the Lfont library specified in the Job Ticket; if the TSF Spec
(_tsf_system.sde) exists, XPP uses it.

XPP checks only the main font library of a numbered series; it does not
search any numbered font libraries. For example, it checks noto, but
not notol, noto2, and so on.

2. If the specified Lfont library does not contain the TSF Spec, XPP checks
the syslib library. If XPP cannot find the TSF Spec in the syslib library,
you cannot edit or print any divisions.

13-2 The Typesetter Font Map Spec (TSF) Fonts

Setting Up the TSF Spec

Setting Up the TSF Spec

Fonts

Setting up the TSF Spec involves accessing the spec, naming the spec, and
understanding the structure of the spec.

Accessing the TSF Spec

Access the TSF Spec from PathFinder using the following sequence:
STYLE LIBRARIES > Library > Typesetter Font Maps > specific TSF Spec

Structure of the TSF Spec

The TSF Spec consists of a File Comment field and one table with the
following sections:

e Header — contains the Table Comment field

® Rules — contains information such as Font Map No.; Encoding table name;
PostScript font Name; encoding Type; Alternate Display Font, CSS font-family,
CSS font-weight, CSS font-style; and Comment

The following figure shows the structure of the TSF Spec.

File Edit View

Select Help

File Comment ‘Font Mapping file for PostScript font numbers to names

Table Comment ‘ order matches fv spec noto. Created Sun May 14 08:30:42 2023

Font Map No. W Alternate Display Font /07 Comment i
Name ‘NotoSerif—Regular
Encoding [Notoserif-Regular Type [cmap 2
css font-family [Noto Serif
L €ss font-weight /Wl:‘ CsSs font-style /Wl:‘]
_Font Map No. W Alternate Display Font /0— Comment i
Name [Notoserif-Bold
Encoding [Notoserif-Bold Type [cmap 7
css font-family [Noto Serif
| CSs font-weight /m css font-style /le]
‘_Font Map No. W Alternate Display Font /07 Comment i
Name ‘NotoSerif—Italic
Encoding [Notoserif-Ttalic Type [emap ¥
css font-family [Noto Serif
| €Ss font-weight /Wl:‘ CsSs font-style /m]
_Font Map No. W Alternate Display Font /0— Comment i
Name ‘NotoSerif—BoldItalic
| Encoding INotoserif-BoldItalic Type [cmap -
css font-family [Noto Serif
| CSs font-weight /m CSs font-style m MR
Ins Comment Field Tble 0 of 1 Rule 0 of 165 Fid 1 |

The Typesetter Font Map Spec (TSF) 13-3

Setting Up the TSF Spec

Font Map No.

Header Fields

The header fields of the TSF Spec are comment fields, allowing you to enter
up to 7 lines of information about the file or the table.

Rule Fields

The rules map the typesetter font number specified in each PTS Spec to a
PostScript font name.

The same number you enter in the Font Number field in the Typesetter
Information section of the PTS Spec.

Entry Description

integer A positive integer in the range of 0 through 65535. This field
entry defaults to 0.

Alternate Display Font

Comment

Name

This field is rarely used. It allows you to use one font for output but specify
an alternate font for screen display in the XyView (WYSIWYG Editor).

Entry Description

integer A positive integer in the range of 0 through 65535. This field
entry defaults to 0.

A comment pertaining to the font accessed by this rule.

Entry Description

string A comment containing up to 7 lines of alphanumeric
characters, including uppercase and lowercase characters,
spaces, symbols (such as $, &, /), and the integers 0-9.

Enter the name of the font. It is essential that this name exactly matches the
actual PostScript font name; it is case sensitive.

Entry Description

string As many as 62 alphanumeric characters, including uppercase
and lowercase characters, spaces, symbols (such as $, &, /),
and the integers 0-9.

13-4 The Typesetter Font Map Spec (TSF) Fonts

Encoding

Type

CSS

Fonts

Setting Up the TSF Spec

The name of the encoding table or CMap used. The encoding table name for
encoding Type: standard for Type 1 fonts is often extended for text fonts or
none for Pi fonts. If you are using a Pi font, you must enter none in this
field. If you leave this field blank, the default for Type: standard is extended
encoding and the default for Type: cmap is the same name as is entered in
the Name field.

Asks whether you want to access glyphs using a CMap file for non-Type 1
fonts or a standard encoding file for Type 1 fonts.

Entry Description

cmap The font in use is a CID or OpenType font. XPP looks for a
CMap file.

standard The font in use is a PostScript Type 1 font. XPP processes the

font accordingly.

These fields are used if your DIV is in css-xml mode; they correspond to the
font-family, font-style, and font-weight properties in your .css
style sheet definitions. Refer to the Styling Content with CSS publication for
more information on using fonts with CSS. That manual also discusses
using the afmtotsf.pl utility, which can be run from PathFinder, to read the font
AFM files and populate any empty CSS fields in a TSF spec.

Entry Description

font-family The base family name for the font. The CSS font-family name
field value is an alias to the actual font used in XPP, as the
CSS font name can be different than the PostScript font
names used in XPP.

CSS family-name value

where CSS family-name is a valid font family name as defined
in the CSS specification.

font-style The CSS font-style field value specifies whether the font is italic
or not.

Note: The font could be oblique if the actual font referenced is
implemented as an oblique font (rather than a true italic font).
However, in the TSF spec, the font is specified as italic in the CSS
font-style field.

normal | italic

The Typesetter Font Map Spec (TSF) 13-5

Setting Up the TSF Spec

Entry Description
font-weight The CSS font-weight field value specifies whether the font is
bold or not.

normal | bold

13-6 The Typesetter Font Map Spec (TSF) Fonts

Chapter 14

Encoding Tables

This chapter describes encoding tables for PostScript fonts and provides
some common encoding tables.

Fonts Encoding Tables 14-1

Encoding Tables for PostScript Fonts

Encoding Tables for PostScript Fonts

All PostScript Type 1 fonts have a default encoding table that specifies the
codes used to access the glyphs. This default table resides within the font
itself.

All OpenType fonts also contain an internal table that maps Unicode code
points to the glyphs in the font. Font Copy uses this to create the font-
specific CMap.

CID fonts that are not OpenType contain neither a default encoding nor a
Unicode mapping table. They must be addressed using separate CMaps
that are built for the particular arrangement of glyphs in the font.

The default PostScript character encoding supplied by the Adobe Type 1
Roman text fonts includes 149 glyphs, 32 reserved codes, and 75 unused
codes. They may also contain “unencoded” characters, which are
represented in the .afm file with -1 as the character code (C value).

XPP used to provide access to 75 common unencoded characters in a Type 1
font encoding table called extended. Most of these glyphs are accented,
such as Aacute (A). The complete pathname is XYV_EXECS/sys/od/
ps_dlf/encodings/extended.

Gaution RWS recommends that you do not edit the extended file, although it is no longer delivered.
This file was used for the standard Adobe PostScript Type 1 fonts that XPP used to deliver.

The first few lines of the extended file that used to be deivered are shown

here:

8#201 /Aacute 8#232 /Udieresis

8#202 /Acircumflex 8#227 /Ugrave 8#376 /minus
8#204 /Adieresis 8#233 /Yacute 8#177 /mu

8#200 /Agrave 8#366 /Ydieresis 8#375 /multiply
8#205 /Aring 8#300 /Zcaron 8#336 /ntilde

14-2 Encoding Tables Fonts

Encoding Tables for PostScript Fonts

Each entry in a Type 1 font encoding file is in the format:

8#access-code /character-name

where:

Entry Description

8# Specifies that the next value is a 3 digit octal.

3 digit access-code Specifies the glyph access code (position in the font).
[character-name Specifies the PostScript glyph name, preceded by a slash.

Non-Standard Type 1 Font Encodings

The Xyvision Character Set can be applied to most Type 1 text fonts.
However, all Type 1 Pi fonts and some Type 1 text fonts have different
layouts, such as non-English language fonts and phonetic fonts. The XPP
extended encoding must be disabled for these Type 1 fonts.

To disable the extended encoding, enter none in the Build FAST Encoding/
CMap Table name field and in the TSF Spec Encoding table name field.

The default encoding when the TSF Spec Encoding field is blank for a Type
standard Type 1 font is extended, so in that case or when none was not
entered when running Buld FAST, you must explicitly enter or change it to
none in the TSF Spec Encoding field.

Fonts Encoding Tables 14-3

Reconciling Unencoded Characters for Type 1 Fonts

Reconciling Unencoded Characters for Type 1 Fonts

This section provides information on how to use more glyphs in PostScript
Type 1 fonts that contain more than 256 glyphs or unencoded characters
beyond the 75 that XPP used to provide access to with the extended
encoding file. Note that this information is not necessary with CID or
OpenType fonts.

The procedures described in this section require a solid understanding of

the XPP font environment for Type 1 fonts that XPP used to deliver. If you
do not have this foundation, RWS strongly advises that you read the other
chapters in this manual before attempting any of these procedures.

Handling More than 256 Glyphs

If a font has more than 256 glyphs, or more than 75 unencoded characters, it
exceeds the range of character positions in an encoding table. If you need
access to more than 256 glyphs in the font, it is necessary to create one or
more additional encoding tables. You accomplish this by building two or
more PTS Specs against the single .afm file. A single FAST is then built
against the multiple PTS Specs.

You do not modify the Type 1 font .afm file in any way.

Unencoded Characters Beyond the 75 XPP Used to
Provide

If Build FAST encounters “unencoded’” characters, it means that the font
has glyphs that are not in the encoding table that you specified. You need to
compare the encoding table with the unencoded characters in the .afm file.

If the encoding table includes access to characters that are not in the .afm
tile, you can replace these characters with the “unencoded” characters from
the .afm file to provide access to those characters. However, the .afm file may
contain all 75 characters in the extended encoding file and perhaps many
more.

Reconciling a Few Unencoded Characters

If you run Build FAST with a standard Type 1 Roman text font and use the
extended encoding file, you may get a message that the following
characters are unencoded: onesuperior, twosuperior, threesuperior and
logicalnot. If you receive this message or one similar, and you need to use
these glyphs, follow the method outlined below. If you have more than 75
unencoded characters, refer to page 14-6.

14-4 Encoding Tables Fonts

Fonts

Reconciling Unencoded Characters for Type 1 Fonts

To reconcile a few unencoded characters:

1.

Run Build FAST for the primary glyphs, using the extended encoding
table.

Copy the extended character encoding file (XYV_EXECS/sys/od/
ps_dlf/encodings/extended) to another name (e.g., extended2).

In extended?2:

e Overwrite the character names with the unencoded character
names, using any four numbers (positions). (Be sure to use the
postscript character name exactly as it appears in the font’s .afm
file.)

® Record the position numbers you are using, which are in octal
notation.

® You may then eliminate the remaining characters, if you wish.

Create a new PTS Spec with a unique name that contains one rule for
each of the unencoded characters. (e.g., If the original PTS Spec is
_pts_05001, name the new one _pts_05002)

e Fill in the UNICODE NUMBER and CHAR WIDTH fields as appropriate.

e Fill in the CHAR CODE field with the same position number value
used in the extended? table.
You may want to convert the octal to decimal notation.

® The value in the Font Map Number field in the header must match the
unique number you used in naming the spec.

In the original PTS Spec (created from running Build FAST), delete the
rules for the unencoded characters (they are assigned CHAR CODE of
do).

Add a rule to the FGS Spec that was created by your initial run of
Build FAST.

The PTS/PSF Spec field must contain the name of the second PTS Spec
that you created. (e.g., FGS Spec already contains pts_05001; add
_pts_05002).

Run GenFAST against this FGS Spec.
Right-click the FGS Spec and select Tools > Generate FAST.
GenFAST creates a single FAST. (e.g., 05001)

Run View FAST to display the FAST you just created.
In the Xlibrary, right-click the original FAST number and select
Tools > View FAST.

In the Font # column, notice that not all the glyphs come from the
original PTS Spec (e.g., 05001). Depending on the number of PTS Specs

Encoding Tables = 14-5

Reconciling Unencoded Characters for Type 1 Fonts

10.

listed in the FGS Spec, the FAST displays a different font number for
these extra glyphs, as well as the position number you assigned.

. Add a rule to the TSF Spec (Llibrary).

e The Font Map No. field should contain the same number you used in
naming the new PTS Spec you created. (e.g. 05002).

e The Encoding table name field should contain the new encoding
table name (e.g., extended?2).

® The PostScript font Name field must contain the same name as the
Name field in the original rule of the TSF Spec.

The TSF Spec should now have two rules in it with the same
PostScript font name, but different encodings and font numbers.

(Optional) Run a Font Width Test of this FAST to verify access to and
correct widths for all glyphs.

® Right-click the FAST in the XLibrary that you want to verify.
® Select Width Test from the pop-up menu.

Reconciling Many Unencoded Characters

If you have a font with many unencoded characters, you follow the same
basic procedure listed for a few unencoded characters. To facilitate the
setup, however, you may run Build FAST twice (or more) using a different
encoding table name each time. Running Build FAST automatically creates
a new PTS Spec (Step 4) and adds a rule to the TSF Spec (Step 7). You then
need to reconcile the resulting multiple PTSs and FASTs.

To reconcile many unencoded characters:

Follow the steps on page 14-5. The exceptions are noted below:

In Step 4, unlike on page 14-5, you do not need to create the PTS Spec
since it is automatically created when you run Build FAST the second
time.

In Step 5, remove all unencoded characters from each PTS Spec.
In Step 6, list all the PTS numbers in the FGS Spec.

Step 7 is unnecessary since Build FAST automatically adds a rule to
the TSF Spec when you run the utility a second time.

You may delete the FGS and PSF Specs that result from the subsequent
runs of Build FAST, as they have no use.

Note: The positions used in the unique encoding table may vary depending on the
default encoding table for that font. Remember that Pi fonts generally use none as
the encoding table.

14-6 Encoding Tables Fonts

Chapter 15

The Kerning Pairs Spec (KP)

This chapter contains the following information on the Kerning Pairs (KP)
Spec:

Understanding the KP Spec

Kerning pairs libraries

® Accessing KP Specs

Setting up a KP Spec

Fonts The Kerning Pairs Spec (KP) 15-1

Understanding the KP Spec

Understanding the KP Spec

Using the KP Spec, you specify a pair of characters and the amount of space
to add or subtract between them. The pair of characters you specify is the
kerning pair; the spacing between the characters is the amount of kerning.
You can expand or reduce the space between the two characters.

The following figure shows the characters A and V placed without kerning
and with kerning.

AV AV
| I— L
without kerning with kerning

Figure 15-1 Characters Placed Without and With Kerning

The Build FAST utility automatically generates a KP Spec if kerning pairs
information is present in the AFM file.

Differentiating Between the KP Spec and the KP File

The KP Spec contains the kerning information that determines the spacing
between two characters. When you store/exit a KP Spec in an Lfont library,
XPP creates a machine-readable _kp_#####.x file and places it in the Kfont
library. XPP programs use the machine-readable file for faster performance.

You cannot view or edit the_kp_#####.x file. To change any of the kerning
information, you need to edit the KP Spec in the Lfont library and store/exit
the spec to update the _kp_###HH#H .x file in the Kfont library.

Note: RWS strongly recommends that you do not delete _kp_######.sde (the KP
Spec) unless you are absolutely sure that you will never need to add, delete, or
modify any kerning pairs for that font. Should you ever decide that you need to
update its corresponding _kp_#####.x file, there is no way to retrieve the active
kern pairs and values from the .x file without the _kp_#####.sde Spec file.

Note: Kerning pairs values provided by the font vendor may not meet your
typographic aesthetic standards. If so, you can repeatedly run the Kerning Pairs
utility, adjust the Kerning Pairs Spec (storing out will cause the file in the Kfont
library to be updated), then run the Kerning Pairs utility again. When satisfied,
compose your documents to decide if further modifications are desired. But then do
not re-run Build FAST on the font again because that will overwrite all your
custom kerning pairs modifications.

15-2 The Kerning Pairs Spec (KP) Fonts

Understanding the KP Spec

How Composition Uses the KP File

You specify the KP file in the Font Variant (FV) Spec. As composition
processes text, it reads the Font Variant Spec and uses the glyph widths
from the specified FAST to set the glyphs.

If the currently active rule in the FV Spec specifies a KP file, composition
searches the text for the characters specified in the KP Spec. When
composition finds matching character pairs, it does the following:

1. Places the first glyph using the glyph width specified in the FAST.
2. Moves left or right by the amount specified in the KP file.

3. Places the second glyph of the pair using the glyph width specified in
the FAST.

For example, the KP file contains a rule defining a pair of characters where
the letter “A” is the first character and the letter “W” is the second
character. The rule specifies removing space between the glyphs so they are
set closer together. If composition finds this pair of characters, it places the
“A,” moves left by the amount specified in the KP file, then places the “W.”

XPP also applies track kerning if the Kemn Track field in the Item Format Spec
or -xpp-kerning-track property in the CSS Spec specifies a track and
the current FV rule defines a value for kerning in that track.

If the currently active rule in the FV Spec does not specify a KP file or the
specified spec does not exist in the library, composition does not change the
amount of space between the glyphs unless you have specified track
kerning by entering a value in the Kern Track field in the Item Format Spec or
-xpp-kerning-track property in the CSS Spec.

Note: If you have specified any replacements in the Ligature/Accent Replacement
field of the Font Variant Spec, the system replaces any specified characters before
applying kerning.

The following figure shows how the system processes the KP file fields and
determines whether to use kerning pairs and/or track kerning.

Fonts The Kerning Pairs Spec (KP) 15-3

Understanding the KP Spec

Start
composing tool

Does the Yes
FV Spec
specify a
KP file?

Apply kerning
specified in
the KP file?

Yes
Is track

kerning —_—
specified?

Is track
keming
specified?

Apply
track kerning

Apply
track kerning

Chatacters
kerned by
pair kerning
as specified in
KP file

Charaacters
kerned by both
pair and track keming
as specified in
KP file

Characters
kerned by
track kerning

Characters
nat
found

Figure 15-2 How the System Applies Pairs and Track Kerning

When to Edit KP Specs

Edit KP Specs when one of the following conditions is true:

® You add a font and want to specify kerning.
® You want to add a kerning pair to a spec for an existing font.

® You want to adjust the amount of kerning specified for an existing
pair.

The widths of glyphs differ from typeface to typeface; the amount of
kerning for a pair in one typeface may not be right for the same glyphs in
another typeface. You may need to create a separate KP Spec for each
typeface or size range.

Delivered KP Specs

XPP delivers KP Specs (based on kerning pairs data in the AFM files) for
the delivered Noto PostScript text fonts to the Knoto library. XPP also
delivers their corresponding machine-readable _kp_#####.x files to that
library. Build FAST generates KP Specs for PostScript fonts when those
fonts include kerning pairs data from the PostScript font vendor.

15-4 The Kerning Pairs Spec (KP) Fonts

Fonts

Understanding the KP Spec

Kerning Pairs Data in Type 1 Font AFM Files

Some Type 1 PostScript font vendors supply kerning pairs data in the
Adobe Font Metrics (AFM) files. Some Type 1 font vendors do not supply
kerning pairs data in the AFM files. The number of kerning pairs varies
from vendor to vendor.

Note: In AFM files, negative values remove white space from between two glyphs.
However, in the XPP KP Specs, positive values remove white space.

In the following example, a line of kerning pairs data, in an AFM file, reads:
KPX Ay -92
® The -92 moves the A and y closer together by 92 units (based on 1000

units per em).

® The corresponding entry in an XPP KP Spec contains 92 in the Kemn
Amount field (not -92). Conversely, positive values in AFM files are
entered as negative values in KP Specs.

The Kerning Pairs Spec (KP) 15-5

Kerning Pairs Libraries

Kerning Pairs Libraries

The first time you store a KP Spec in a new Llibraryname, XPP automatically
creates a destination kerning pairs library called Klibraryname if it does not
already exist. It then creates the machine-readable version of the spec and
places it in the destination library. If you edit other KP Specs in that source
library, the system places a machine-readable version of the corresponding
specs in the destination library.

You can create and edit Kerning Pairs Specs in the same font libraries that
contain source font specs, such as the PTS and FGS Specs and so on.

KP Specs in the Font Spec Library

The following figure shows an example of the source and destination
libraries when KP Specs are created and edited in the same library as the

font specs.
Lnoto font library
contains font specs
and KP Specs

Run GenFAST Edit and Store
the KP Specs

Knoto Kerning Pair

Xnoto FAST destination library

destination library contains machine-readable
contains FAST files KP files

Figure 15-3 Example of KP Specs in the Font Library

15-6 The Kerning Pairs Spec (KP) Fonts

Setting Up a KP Spec

Setting Up a KP Spec

Fonts

Naming a KP Spec

When creating a KP Spec, you assign it a name consisting of the _kp_ prefix
followed by a name consisting of up to eight alphanumeric characters, For
example, you can give the spec a numeric name such as _kp_00001.sde. Or
you can give the spec a name that reflects the font with which it will be
used, such as _kp_timesrom.sde.

Accessing KP Specs

Access the Kerning Pairs Spec from PathFinder using the following
sequence:

STYLE LIBRARIES > Llibrary > Kerning Pairs > Specific KP Spec

You may find Kerning Pairs Specs in more than one library.

Structure of a KP Spec

The KP Spec consists of one table with the following sections:

® Header — contains a File Comment field, a Table Comment field, and
a Relative Kerning Units per Em Field.

® Rule — contains fields for specifying the characters in a kerning pair,
the amount of space you want to add or subtract between the glyphs,
and a comment.

The following figure shows the structure of the KP Spec.

W notos Master kp 00501 - x
Fle Edit View Insert Select Help

= User-provided information about this Spec.

Rules defining the kerning pairs and the

Positive values remove space; negative

File Comment |Postscript Noto Serif Regular = |
{Table Comment ‘Tue Sep 13 10:38:02 2022 T _
Relative Kerning Units per Em w _Number of units the typesetter assigns
ist Char /"7 2nd Char ’Ai Amt /807 Comment | i
1st Char /"— 2nd char |c Amt /2@— Comment |
1st Char /"— 2nd char [d Amt /28— Comment |
ist Char /"7 2nd char [e Amt /2@7 comment |
ist Char /"7 2nd Char ’97 Amt /r Comment | —amount ot kerning.
st char [* 2nd char o Amt[2e Comment | values add space.
ist Char /"— 2nd Char ’q— Amt /28— Comment |
ist Char /"7 2nd Char ’Ai Amt /8@7 comment |
ist Char [* 2nd char [& Amt [so Comment |
L=
Ins Comment Field Table 0 of 1 Rule 0 of 51456 Ad 1

The Kerning Pairs Spec (KP) 15-7

Setting Up a KP Spec

Header Fields

The header fields in the KP Spec consist of: File Comment, Table Comment, and
Relative Kerning Units per Em. The File Comment and Table Comment fields contain
information provided by the user or Build FAST. The Relative Kerning Units per
Em field is described below.

Relative Kerning Units per Em

Enter the number of units your typesetter assigns per em space. For
example, PostScript devices use 1000 units per em space.

Entry Description

integer An integer in the range 0 through 65535. This field entry
defaults to 1000.

Rule Fields

Create a rule in the KP Spec for each kerning pair you want to define. XPP
can handle a maximum 6,553,500 kerning pairs.

Rule Field: 1st Char and 2nd Char

Enter the first character in the kerning pair you are specifying in this rule.
This field accepts only one character; you cannot enter multiple characters.
If the font has ligatures, such as fI, you can enter a ligature in this field. The
system treats a ligature as a single character.

To enter characters from alternate keyboards, such as ligatures and Pi
characters:

1. Access the keyboard. For example, the fI ligature is on the Default
keyboard. Press Shift + F1 + d to access the Default keyboard.

2. Press the key for the desired character. In this example, press [L] (Shift
+ 1) for the fI ligature;

The system puts the fI ligature in the field.

To enter a Unicode value, type Shift + F2 and you will be prompted to enter
up to 6 hex digits, then press Enter.

15-8 The Kerning Pairs Spec (KP) Fonts

Setting Up a KP Spec

You will see either the character itself, a XYASCII representation of the
character, or a character representation that starts with a "tree” symbol, 2
stacked triangles, followed by hex digits. For example:

1. Press Shift + F2.
2. Enter 391.

3. Press Enter.

XPP displays the Greek capital letter Alpha which has the Unicode
value 0x0391.

If the Xyvision Character Set (XCS) Spec defines an ASCII escape sequence
for the character, the system may enter a representation of that sequence in
this field. In this case, the vertical bar (|) that appears in the XCS Spec
appears as four dots (::) in this field. The remaining two characters of the
escape sequence follow the four dots.

Entry Description

character A valid XSF character or escape sequence.

Kern Amount

Enter the amount of space to add or subtract between the glyphs in the
kerning pair.

® Positive values remove space from between the glyphs; that is, move
the second glyph to the left, closer to the first glyph.

® Negative values add space between the glyphs; that is, move the
second glyph to the right, away from the first glyph.

Entry Description

integer An integer in the range -32767 to 32767. Default is 0.

Comment

A comment describing the kerning pair.

Entry Description

string A comment as long as 26 alphanumeric characters, including
uppercase and lowercase characters, spaces, symbols (such as
$, &, /), and integers 0-9.

Fonts The Kerning Pairs Spec (KP) 15-9

Generating Kerning Pairs Test Divisions

Generating Kerning Pairs Test Divisions

Use the Kerning Pairs Utility (kp_pairs.pl) to generate test divisions in the
CLS_xpputils/GRP_kern/JOB_library from existing Kerning Pairs (KP)
Specs. The utility prompts you for the name of the Font (or FAST) Library, a
Font Variant Spec, and typeface parameters.

Based on the information you provide, the kp_pairs utility generates a
composed division with four sets of pages — one set of pages for each of
the four kerning tracks defined in the Font Variant Spec. Each set of pages
contains the pairs from the Kerning Pairs Spec in the font family, font
variant and point size specified, followed by a short piece of sample text
that shows the results of using kerning pairs and track kerning.

Typeset and review the test division. If you want to change the aesthetics of
a typeset page, you can change the kerning pair values in the KP Spec
and/or the kerning track values in the Font Variant Spec, then rerun the
utility.

Running the kp_pairs Utility

To run the kp_pairs utility from PathFinder:

1. Access the KP Spec you want to process, using the following sequence:

STYLE LIBRARIES > Lfontlib > Kerning Pairs
PathFinder displays the KP Specs in the PathFinder List View.

2. Right-click the KP Spec that you want to process.
PathFinder displays a pop-up menu.

3. Select Tools > Kerning Pairs Utility.
XPP displays the View Kerning Pairs dialog box.

Faont Libran: |><pc:st
Library/Font % ariant: ILstd-fmt.f'pcust

Font Family:
Font Variant:
Pointsize: 12

Units:

] | Cancel

LT

15-10 The Kerning Pairs Spec (KP) Fonts

Fonts

Generating Kerning Pairs Test Divisions

4. In the dialog box, fill in the following fields:

a. Font Library: field— select the FAST library.
This utility adds the library name to the Font Width Library field in the
Job Ticket, which is used for the resulting division.

b. Library/Font Variant: field—specify a library-level Font Variant Spec
(FV).
c. Enter values in the Font Family, Font Variant, Pointsize, and Units fields.

. Click the OK button to start processing.

The kp_pairs utility displays a message box stating that the process is
complete and displays the location of the kerning pairs division:
CLS_xpputils/GRP_kern/JOB_fontlib/DIV_kpname path. The job name
is the name of the Kerning Pairs library and the division name is the
name of the KP Spec. If the job path does not already exist, the utility
creates it for you.

For example, if you generate a test division for Kerning Pairs Spec
00502 in the noto library, the utility generates the following test
division:

CLS_xpputils/GRP_kern/JOB_noto/DIV_00502.

The message box asks if you want to examine the division?

. Click the yes button.

XPP opens the division in the Xy View.

Click the no button.
You can view it later.

Notes About the Utility

When using the utility, note the following:

® Each time you run the kp_pairs utility and specify a new FAST library

and/or Font Variant Spec, the kp_pairs utility updates the Font Width
Library and Font Variant Spec fields in the Job Ticket with the new names.
If you run the utility with a different FAST library or FV Spec, then
recompose previously-generated divisions, the changes in the Job
Ticket may affect the appearance of kerning pairs and other text in the
divisions.

The test division displays the current kern value (if any) after each
kerning pair. This value helps eliminate confusion about what kerning
pairs values were in effect before track kerning was applied and helps
you while editing the KP Spec to make adjustments.

The Kerning Pairs Spec (KP) 15-11

Generating Kerning Pairs Test Divisions

Related Information

e If you have specified any replacements in the Ligature/Accent Replacement
field of the Font Variant Spec, XPP replaces any specified characters

before applying kerning. For more information, see|“The Font Variant
Spec (FV)”|on page 12-1 and |“The Ligature/Accent Replacement Spec,
(RP)”on page 16-1.

e For information about setting track kerning, see

on page 12-1.

“The Font Variant|

15-12 The Kerning Pairs Spec (KP) Fonts

Fonts

Chapter 16

The Ligature/Accent
Replacement Spec (RP)

This chapter contains the following information on the Ligature/Accent
Replacement (RP) Spec. When using OpenType fonts, you may not need to
use the RP Spec or will use it only for common ligature replacements:

Understanding the RP Spec
The standard RP Spec
Modifying the RP Spec

Viewing ligature/accent replacement

The Ligature/Accent Replacement Spec (RP) 16-1

Understanding the RP Spec

Understanding the RP Spec

Using the RP Spec, you specify whether you want the system to replace
either one of the following;:

® Accents with a different accent or with the same accent positioned
differently.

® Characters with the corresponding ligature—a combination of
characters, usually with less space between them than if you entered
them individually—that the system treats as one character.

You specify the characters you want to replace in the Lig/Accent Replace field
of the FV Spec. Using the Ligature/Accent Replacement Spec affects
composition, screen display, and output.

Unicode Non-spacing Marks

XPP 8.x and later uses the Unicode non-spacing marks model, which means
that a Unicode base character, followed by a number of non-spacing marks
(typically accents), dynamically stack the marks over (or under) the base
character. A base character can be an actual character, a fixed space, variable
space, non-breaking space, or a ligature. Using XPP 8.x and later, you can
“float” a maximum of 10 marks.

When you use this model, composition behaves in the following ways:

e Uses the Unicode character table combining class to determine
whether it is a non-spacing mark.

® Jgnores the widths of the non-spacing marks and justifies the line
accordingly.

® Does not hyphenate between the base character and any non-spacing
marks.

® Accepts a limit of ten (10) non-spacing marks.

e If there is a custom RP Spec rule for the same base/accent
combination, that will override the dynamic non-spacing mark
behavior to ensure backward compatibility with the RP Spec behavior.

Using this method means that you no longer need to set up all the character

combinations in the Replace Table Spec and instead, can just use the
Unicode non-spacing marks you need.

16-2 The Ligature/Accent Replacement Spec (RP) Fonts

Fonts

Understanding the RP Spec

You can turn on non-spacing marks from the Enable non-spacing marks field in
the Division Ticket and in the Job Ticket. In the Division Ticket, you can
select “yes, no, default” and in the Job Ticket, you can select “yes, no”.
Default in the Division Ticket means to use the yes/no setting in the Job
Ticket. All existing jobs have the Job Ticket set to 1o by default and the
Division Ticket set to default.

Replacing Accents

You can replace certain accents with other accents. For example, your font
has both uppercase and lowercase accents. When a lowercase accent
appears with an uppercase character, you can replace the lowercase accent
with an uppercase accent.

Or, if your font has only lowercase accents, using rules in the RP Spec, you
can properly place the accents using the Accents (acrm) XyMacro.

Replacing Characters with a Ligature

You may want to replace certain characters with the corresponding ligature.
For example, you could specify replacing the character combination f i with
the corresponding ligature fi.

How Composition Uses the RP Spec

You specify the characters you want to replace in the Lig/Accent Replace field
of the Font Variant (FV) Spec. You can specify certain ligatures, all ligatures,
accents (in various settings), or both ligatures and accents. If the Lig/Accent
Replace field in the currently active rule of the FV Spec contains the entry
none, composition does not use the RP Spec to replace any characters in
text.

Composition uses the following look-up procedure to determine which
characters to replace:

1. Processes the Lig/Accent Replace field entry in the FV Spec to determine
which rules to look for in the RP Spec (refer to the section
“How Composition Uses the Lig/Accent Replace Field” on page 16-4).

2. Checks the RP Spec for rules with Ligature Mask fields that match
according to the results of step 1.

3. Checks the Input String field to determine which characters to look for in
the division when it finds a matching Ligature Mask field.

4. Checks the text in the division for the characters.

The Ligature/Accent Replacement Spec (RP) 16-3

Understanding the RP Spec

5. Replaces the characters with the contents of the Oufput String field of the

corresponding RP Spec rule.

The following figure shows how composition processes these specs and the
text in the division.

FV Spec

Ligftaorent Replace fi

RP Spec

Input Ztring
Output String
Ligature Mazk

ffi
fi
ffi

Rule Comment: Replace charaders

with ligature

Division

Composition checks the Lig/Accent Replace field in the FV
Spec for any specified replacements. It breaks down
the entry in the field into its component entries (if
possible). Refer to the following section “How
Composition Uses the Lig/Accent Replace Field.”

It checks the RP Spec for matching Ligature Mask rule
fields. (Note that the Lig/Accent Replace field can contain
an integer combining several entries). It then checks
the Input String field of that rule for the character to
replace. In this example, the Input String field contains
three characters —f, f, and i.

Composition searches the text for the specified
character(s) and replaces it(them) with the contents of
the Output String. In this example, the Output String field
contains one character — the ffi ligature.

Figure 16-1 How Composition Uses the RP Spec

How Composition Uses the Lig/Accent Replace Field

To determine which RP Spec rules to use, composition first breaks the
Ligature/Accent Replace field entry in the FV Spec into powers of 2 (e.g., 1,2, 4,
8,16, 32, 64, 128, 256, 512, 1024).

For example, the Ligature/Accent Replace field in the FV Spec contains the entry
all. This is equivalent to an entry of 31 which breaks down into the sum of
the following powers of 2: 2* = 16 (fl), 2° = 8 (ff), 2% = 4 (fi), 2" = 2 (ffi), and
20=1 (ffl). Composition uses the RP Spec rules with 16, 8, 4, 2, and 1 in the

Ligature Mask field.

16-4 The Ligature/Accent Replacement Spec (RP)

Fonts

Understanding the RP Spec

Accessing the RP Spec

Access the Ligature/Replacement Spec in the Lsyslib library using the
following sequence:

STYLES LIBRARIES > Lsyslib > Ligature—Accent Replacement > sys

Editing the RP Spec

The system uses only the Ligature/Accent Replacement Spec, named
_rp_sys.sde, in the Lsyslib library. Do not create other RP Specs or rename
_rp_sys.sde. Although you may modify this spec, generally, you do not need
to.

However, you should check the _rp_sys Spec to determine whether the
existing rules meet your needs. If you determine that you need to create a
new rule, gather the following information before beginning;:

® Accents—additional accents you want to replace and the characters
with which you want to replace them.

® Other characters—any characters you want to replace and the
characters with which you want to replace them.

To specify which characters you want composition to replace, perform one
of the following;:

® Use the entry in the Ligature Mask field as the entry in the Lig/Accent
Replace tield of the FV Spec

e Combine the entries of multiple Ligature Mask fields to use as the entry
in the Lig/Accent Replace field of the FV Spec

You see the effects of edits to the RP Spec on text in divisions the next time
you compose.

Note: If you add or delete rules in the standard rp_sys Spec, the rule numbers
referred to in this document may no longer apply.

Fonts The Ligature/Accent Replacement Spec (RP) 16-5

The Standard RP Spec

The Standard RP Spec

XPP delivers the Ligature/Accent Replacement Spec named _rp_sys.sde to
the library named Lsyslib. This spec contains characters that composition
can replace, including ligatures and accents.

The system will only use the _rp_sys.sde Spec. Do not rename this spec or
create additional RP Specs. However, you may modify this spec.

The rules in rp_sys are organized according to function:

® Rules 1 -5 are for ligature replacement.
® Rules 6 - 11 are for fonts with both lowercase and uppercase accents.

e Rules 11-24 are for fonts with only lowercase accents.

Ligatures

Rules 1 through 5 in the standard XPP-delivered spec specify replacement
of characters with the corresponding ligature. The following table shows
the character combinations and the ligature that replaces them.

Table 16-1 Ligature Replacement Rules

Rule If composition finds the It replaces them with the ligature...
characters...

1 ffl ffl

2 ffi ffi

3 fi fi

4 ff ff

5 f1 fl

Although the contents of the Output String field appear to be the same as the
contents of the Input String field, they are not. The Input String field contains
individually entered characters; the Oufput String field contains one character
— a ligature. Position the cursor on the contents of these fields to see that
the contents differ.

If the Lig/Accent Replace field of the FV Spec specifies all (alone or in
combination with other entries), composition uses all the ligature rules.

Refer to the section “Structure of the RP Spec” on page 16-11 for
descriptions of the fields and their valid entries.

16-6 The Ligature/Accent Replacement Spec (RP) Fonts

Fonts

Accents

The Standard RP Spec

Rules 6 through 24 in the standard XPP-delivered _rp_sys.sde Spec are for
various types of replacing accents. The following sections describe the
contents of the rules and how composition uses the information.

Note: Frequently, multiple rules have the same ligature mask. This is because each
rule may denote a different contiguous range or set of Unicode codes.

Lower and Uppercase Accents in Font

Rules 6 through 11 are useful for configurations in which the font has both
lowercase and uppercase accents but does not have combined accented
characters. These rules replace lowercase accents appearing over uppercase
letters with uppercase accents in floating accents only, that is, accents
entered using the Accent (F2) key. These rules do not affect accents entered
using the Alternate Keyboard (F1, Pi keys, or non-spacing accents
automatically being floated over base characters.

The following table explains the character combinations that composition
replaces and the corresponding replacement characters. The RP Spec rules
contain the escape sequences that correspond to these Unicode values. Refer
to the XPP document, Xyvision Character Set, to determine the characters
corresponding to the referenced Unicode values.

Table 16-2 Rules for fonts with Both Lower- and Uppercase Accents

Rule If composition finds...

It replaces...

6 a lowercase accent with Unicode the accent with the corresponding
0x327, 0x30A, 0xFO2EC, 0x311, uppercase accent (Unicode
0x328, 0x313, 0x301, 0x300, 0x315, 0xF0416-xF0425 or 0x02DD).
0x303, 0x306, 0x304, 0x30C, 0x302,
0x308, x307, or 0x30B followed by
an uppercase letter

7 a lowercase math accent with the accent with the corresponding
Unicode 0x20D6, Ox20D7, 0x20D0, uppercase accent (Unicode
ox20D1, or 0xF048F-0xF0493 0xF0427-0xF042F)
followed by an uppercase letter

8 a lowercase accent with Unicode the i with a dotless i (1)
0x30A (lowercase bolle) followed by
a lowercase i

9 a lowercase accent with Unicode the i with a dotless i (1)
0x311 (lowercase inverted breve)
followed by a lowercase i

10 a lowercase accent with Unicode the i with a dotless i (1)

0x313, 0x301, or 0x300 followed by a
lowercase i

The Ligature/Accent Replacement Spec (RP) 16-7

The Standard RP Spec

Table 16-2 Rules for fonts with Both Lower- and Uppercase
Accents (Continued)

Rule If composition finds... It replaces...

11 a lowercase accent with Unicode the i with a dotless i (1)
0x303, 0x306, 0x304, 0x30C, 0x302,
x0308, 0x307, or 0x30B followed by
a lowercase i

The Ligature Mask field for these rules contains the entry accents. If the
Lig/Accent Replace field of the FV Spec specifies accents (alone or combined
with other entries), composition uses all these rules.

Rules 8 through 11 replace a dotted i with a dotless i (1) in cases where the
accent would interfere with the dot over the i. There are four rules (8
through 11) for replacing the i with a dotless i because the Unicode values
are not contiguous. Unicode values 0xFO2EC, 0x328, and 0x315 are for
accents where it is not necessary to replace the i.

It is not necessary to replace the i with a dotless i in cases where the accent
floats under or next to the base character, such as the lowercase virgule
(Unicode 0xF02EC), the lowercase hook (Unicode 0xFO2EE), and the
lowercase apostrophe beside accent (Unicode 0x315). The spec also does not
contain lowercase math accents because they are not typically used with a
dotless i.

Lowercase Accents Only in Fonts

Rules 12 through 24 are useful for configurations in which the font has
lowercase accents only and does not have combined accented characters.
These rules replace uppercase or lowercase accents over uppercase
characters with lowercase accents properly positioned over the uppercase
character. These rules affect floating accents only, that is, accents entered
using the Accent(F2) key; they do not affect accents entered using the
Alternate Keyboard (F1), [Pi] keys, or non-spacing accents automatically
being floated over base characters.

Note that the Ligature Mask field for rules 12 through 24 contains the entry 64.
If the Lig/Accent Replace field of the FV Spec specifies 64 (alone or in
combination with other entries), composition uses all these rules.

Rules 12 through 20 output an Accents (acrm) XyMacro with the appropriate
base and accent characters. Using rules 12 through 20, composition corrects
instances where the text contains a lower- or uppercase accent over an
uppercase character, but the font has only lowercase accents. Composition
does not replace accents that appear below the base character. The Accents
(acm) XyMacro floats the accent over an uppercase character.

16-8 The Ligature/Accent Replacement Spec (RP) Fonts

Fonts

The Standard RP Spec

To position the base character and the accent, the standard Accents (acm)
XyMacro does the following;:

1.
2.

5.

Outputs the uppercase base character.

Shifts the baseline up by %10 of the current font height.

Moves left by half the width of the character and half the width of the

accent.

Outputs the lowercase accent (now properly positioned over the base

character).

Restores to the horizontal and vertical position past the character.

The following table describes the character combinations that composition
replaces when using rules 12 through 24. The RP Spec rules contain the
escape sequences that correspond to these Unicode values. Refer to the XPP
document The Xyvision Character Set to determine the characters
corresponding to the referenced Unicode values.

Table 16-3 Rules for fonts with Lowercase Accents Only

Rule If composition finds... It replaces...

12 uppercase accents with Unicode numbers the accent with the
0xF0417-0xF0419 preceding an uppercase corresponding
letter lowercase accent

using the Accents

13 uppercase accents with Unicode numbers (acm) XyMacro
0xF041B-0xF0425, or 0x2DD preceding an
uppercase letter

14 uppercase math accents with Unicode

numbers 0xF0427-0xF042F preceding an
uppercase letter

The Ligature/Accent Replacement Spec (RP) 16-9

The Standard RP Spec

Table 16-3 Rules for fonts with Lowercase Accents Only (Continued)

Rule If composition finds... It replaces...

15 a lowercase math accent with Unicode the accent and
number 0xFO2E7 preceding an uppercase character with the
letter Accents (acm)

XyMacro using the

16 lowercase accents with Unicode numbers same accent and

0x30A, 0xFO2EC, or 0x311 preceding an character

uppercase letter

17 lowercase accents with Unicode numbers
0x313, 0x301, 0x300, 0x315, 0x303, 0x306,
0x304, 0x30C, 0x302, 0x308, 0x307, or 0x30B
preceding an uppercase letter

18 lowercase math accents with Unicode
numbers 0xF046C-0xF0475 preceding an
uppercase letter

19 lowercase math accents with Unicode
numbers 0xF0478—-0xF047E preceding an
uppercase letter

20 lowercase math accents with Unicode
numbers 0x20D6, 0x20D7, 0x20D0, 0x20D1,
or 0xF048F-0xF0493 preceding an uppercase

letter
21 lowercase accent with Unicode number the lowercase dotted i
0x30A followed by a lowercase dotted i with a lowercase
dotless i (1)
22 lowercase accent with Unicode number

0x311 followed by a dotted i

23 lowercase accents with Unicode numbers
0x313, 0x301, or 0x300 followed by a
lowercase dotted i

24 lowercase accents with Unicode numbers
0x303, 0x306, 0x304, 0x30C,0x302, 0x308,
0x307, or 0x30B followed by a lowercase
dotted i

Rules 21 through 24 replace a dotted i with a dotless i (1) in cases where the
accent would interfere with the dot over the i. These rules function the same
as 8 through 11 with one exception: the Ligature Mask field contains the entry
64 rather than accents. The rules are repeated this way so that they are
available using either entry (alone or in combination with other entries) in
the Lig/Accent Replace field of the FV Spec.

16-10 The Ligature/Accent Replacement Spec (RP) Fonts

Structure of the RP Spec

Structure of the RP Spec

The RP Spec consists of the following sections:

e Header — contains comment fields

® Rules — rules specifying the character to replace, the character to
replace it with and a comment

The following figure shows the structure of the first, sixth, twelfth, fifteenth,
and twenty-first rule of the rp_sys Spec.

Fonts The Ligature/Accent Replacement Spec (RP) 16-11

Structure of the RP Spec

% syslib/ Master rp sys

File Edit View Insert Select Help

=100]

File Comment |[For a rule to be used, its "Ligature Mask" must he included in the

Tabhle Comment

~Input String
Output String
Ligature Mask
LRule Comment

~Input String
Output String
Ligature Mask
LRule Comment

Input String
Output String
Ligature Mask
ule Comment

Input String
Dutput String
Ligature Mask
ule Comment

Input String
Output String
Ligature Mask
ule Comment

| Ins Standard

"Lig/ficcent Replace" entry in the FVU spec; the Table Comment helow

lists common entries for the FU spec. 4-90: Added rules for math a
ccents; no dotless i replacements for math accents. 4-93: Deleted

rules replacing 1l-piece Adieresis, Odieresis, and Udieresis with 2-
piece characters because PostScript fonts contain the 1-piece chara
cters.

LIGATURE MASKS—"1" or "ff1"; “2" or "ffi"; "4" or "fi"; "B" or "f
f£'; "16" or "f1"; "31" or "all." Other combinations are possihle—
e.qg., "24" =8 (ff) + 16 (f1). ACCENT MASKS—Output device has upp
ercase & lowercase accents: "32" or "accents." Output device has o
mly lowercase accents: "64." LIGATURE + ACCENT MASKS—All ligature
s (31) + u.r/l.c. accents (32): "63" or "both." All ligatures (31)
+ l.c. accents (64): "95." Other combinations are possible-——e.g.,
"84" = 4 (fi) + 16 (f1) + 64 (l.c. accents).

ffl
Ff1
ffl +

This ligature mask represented numerically is 1.

57 LAcAo:AvEA jrAak:AL rAncAtT T Y HAX AP Au 1T LA-Z]
S7[ACAD:AV AT AK AL AACAG AN AT AR AM AH A IADAP::AUT?
accents +

Look for a lowercase accent (in this case, X3F codes 746-762) foll

owed by an uppercase alpha and output an uppercase accent (XSF cod
es 1046—-1062). This mask represented numerically is 32.
[67:AD:AVAT I TA-Z]

acm;?[::ﬂu::ﬂu::ﬂj];?

64 +

Look for an uppercase accent (in this case, XS5F codes 1047-1049) f

onllowed by an uppercase alpha and float a lowercase accent using t
he <acm> macro.

[f=A=7TA-Z1
acm;: ?
64 7]

Look for a lowercase math accent (in this case, X3F code 743) foll

owed hy an uppercase alpha and float the lowercase accent using th
e <{acm> macro.

5::Aoi

5:Ao1

64 +

Look for a lowercase accent (in this case, XSF code 747) followed

by a lowercase i and substitute a dotless i.

Tabhle 1 of 1 Rule 3 of 24 Fla 1

Figure 16-2

Ligature/Accent Replacement Spec

16-12 The Ligature/Accent Replacement Spec (RP)

User-provided

— information

about this spec.

Rule 1

Specifies
“ligature

replacement

Rule 6

Specifies accent
replacement when
both uppercase and
lowercase accents
are available on

the output device

Rule 12

Specifies accent
replacement

using the <acm>
XyMacro when only
lowercase accents
are available on
the output device.

Rule 15

Specifies accent
replacement
using the <acm=
XyMacro when
same accent and
character are
available on the
output device.
Rule 21

Specifies
replacemnt

of dotted i

with a lowercase
dottless i in cases
where the accent
would interfere with

Fonts

Structure of the RP Spec

Header Fields

File Comment and Table Comment

Enter information about the table.

Entry Description

string A comment as long as 7%% lines (512 alphanumeric characters,
including uppercase and lowercase characters, spaces,
symbols (such as $, &, /) and the integers 0-9).

Rule Fields

Input String and Output String

Fonts

Enter the character or string defining the characters you want composition
to look for in the text by their Unicode numbers. When composition finds
the specified characters, it replaces them according to the entry in the Output
String field.

Entry Description

string Up to 65 alphanumeric characters including:
® Direct input of characters from the Standard keyboard (0).

® ASCII escape sequences for characters (from alternate
keyboards). The system displays some ASCII escape
sequences as character strings and other ASCII escape
sequences as single characters.

For example, the Input String field in rule 10 of the standard
RP Spec contains an ASCII escape sequence (::Al) and the
grave accent (*). Both characters were entered by pressing
Shift + Alternate Keyboard (F1) + Shif + a to activate the
Accents keyboard (keyboard A), then selecting the desired
character from that keyboard.

® The Accent key (F2) generates the | $$ XYASCII sequence
followed by the floating accent character. In a Spec field,
the |$$ XYASCII sequence looks like he accent indicator
symbol, 2. However, in the RP Spec, a “$” input string
represents a floating accent. To enter accent characters, use
the Accents Keyboard (Shift + F1 + Shift + a); do not use
the Accent key (F2).

e ? for a single wild card.

The Ligature/Accent Replacement Spec (RP) 16-13

Structure of the RP Spec

Entry Description

® The characters “[” and “]” after “?” to define ranges or sets
of Unicode numbers. The system interprets a field entry of
[A-Z] as the range of Unicode number 0x41 to Unicode
number 0x5A.

The multiple character wild card symbol (*) is not a valid
entry in this field.

Ligature Mask

Composition uses the entry in the Lig/Accent Replace field of the FV Spec
along with the entry in the Ligature Mask field to determine whether to use
this rule.

There are two types of valid entries: Integers and Alphabetic strings

There is a corresponding integer entry for each alphabetic string. You can
combine rules by adding the integer entries and entering that sum in this
field. The integer entries and their the corresponding alphabetic strings are
shown in a following list.

If you enter an integer that has a corresponding alphabetic entry (i.e., 1 for
tfl, 2 for ffi, and so on), the integer changes to the corresponding alphabetic
entry when you exit the field. For example, if you enter 31, the integer
changes to all when you exit the field.

If you enter an integer that does not have a corresponding alphabetic entry
(i.e.,, 17, 64, and so on), the integer does not change when you exit the field.

When creating a user-defined rule, use the next available power of 2. The
entry should not already exist and the system should not be able to break it
down into predefined entries as described in the section “How Composition
Uses the Ligature/Accent Replacement Field” on page 16-4, earlier in this
chapter. For example, if the RP Spec contains a rule specifying 128 (the
value of 27), use the next power of 2 which is 256 (the value of 2°).

Entry Description

integer A power of 2 in the range 0 through 2! to represent
character replacements (e.g., 1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024).

When assigning a Ligature Mask to a user-defined rule, use
an integer that is a power of 2. Otherwise, the system breaks
the entry into powers of 2 and you do not get predictable
results. For example, if the Ligature Mask field contains the
entry 100, composition breaks the entry into 64, 32 (accents),
and 4 (fi).

The integers that have defined strings are shown below.

16-14 The Ligature/Accent Replacement Spec (RP) Fonts

Fonts

Structure of the RP Spec

Entry

Description

string

An alphabetic string for the character replacement. These are
also available with the Next Choice, Prev Choice menu options.
Below is a list of the defined strings.

Table 16-4 Defined Entries for the Ligature Mask Field

Integer String Specifies

0 none no ligature or accent replacement (default). This value is
meant mainly for use in the Lig/Accent Replace field of the FV
Spec.

1 ffl replacing the string with the ffl ligature.

2 ffi replacing the string with the ffi ligature.

4 fi replacing the string with the fi ligature.

8 ff replacing the string with the ff ligature.

16 fl replacing the string with the fl ligature.

20 fifl replacing the string with the fi and fl ligatures. This value is
meant mainly for use in the Lig/Accent Replace field of the FV
Spec.

31 all replacing any ligature character combination
(ffl, ffi, fi, fl, ff) with the corresponding ligature. This value is
meant mainly for use in the Lig/Accent Replace field of the FV
Spec.

32 accents replacing accents only.

63’ both replacing both ligatures (31) and accents (32). This value is
meant mainly for use in the Lig/Accent Replace field of the FV
Spec.

64 NA3 replacing accents only (using the Accents (acm) XyMacro).

842 NA? replacing accents (64) (using the Accents (acrm) XyMacro)
and fi and fl ligatures (20). This value is meant mainly for
use in the Lig/Accent Replace field of the FV Spec.

95° NA3 replacing both accents (64) (using the Accents (acm)

XyMacro) and ligatures (31). This value is meant mainly for
use in the Lig/Accent Replace field of the FV Spec.

! Use this entry if your font has both uppercase and lowercase accents.
2 Use this entry if your font has only lowercase accents.
3 NA = Not Available. This integer does not have a corresponding string entry.

The Ligature/Accent Replacement Spec (RP) 16-15

Structure of the RP Spec

Rule Comment

Enter information about the rule, such as its purpose.

Entry Description

string A comment as long as 7% lines (512 alphanumeric characters,
including uppercase and lowercase characters, spaces,
symbols (such as $, &, /), and the integers 0-9).

Examples of RP Spec Rules

This section contains an example of how composition processes a rule in the
_rp_sys.sde Spec and an example of the type of rule you may want to add to
the _rp_sys.sde Spec.

Example 1

This example explains the purpose of rule 12 of the _rp_sys.sde Spec, shows
how composition uses the rule, and explains the contents of the Ligature
Mask, Input String, and Output String fields. The following figure shows rule
12 of the _rp_sys Spec. Note that if you have added or deleted any rules
from the spec, this rule may no longer be rule 12.

=l x|

File Edit View Insert Select Help

~Input String [S7L:AD:AUSATITLIA-Z] A
Output String acm;?[::nu::nu::ﬁj] ;78

Ligature Mask |64 +

LRule Comment |Look for an uppercase accent (in this case, XSF codes 1047-1049)
followed by an uppercase alpha and float a lowercase accent using
the <acm> macro.

—

Ins Comment Field Tahle 1 of 1 Rule 12 of 24 Fld 2

Rule 12 replaces uppercase accents using Unicode numbers
0xF0417-0xF0419 with the corresponding lowercase accent (Unicode
number 0x30A, 0xFO2EC, or 0x311). This character becomes the first
argument of the Accents (acm) XyMacro. The second character of the
floating accent string becomes the second argument in the Accents (acm)
XyMacro (i.e., the uppercase base character). If your font has only lowercase
accents but not combined accented characters, this replacement is desirable.

When composition uses rule 12 in the RP Spec _rp_sys.sde, it looks for an
uppercase accent with an Unicode number 0xF0417 (ASCII escape sequence
::AO) through 0xF0419 (ASCII escape sequence ::AJ) followed by an
uppercase character.

If composition finds this character combination, it replaces the characters
with the same base character and the appropriate lowercase accent, shifted

16-16 The Ligature/Accent Replacement Spec (RP) Fonts

Fonts

Structure of the RP Spec

up by the Accents (acrn) XyMacro so it will not interfere with the base
character.

Following is a description of the Input String, Output String, and Ligature Mask
fields for rule 12 in rp_sys.

The Ligature Mask field contains the following entry: 64
The entry 64 denotes replacing floating accents with accents created with
the Accents (acm) XyMacro. Rules with a 64 in the Ligature Mask field are

useful for configurations in which the font has only lowercase accents but
not combined accented characters.

The Lig/Accent Replace field in the FV Spec must contain this entry (alone or
in combination with other entries) for composition to use this rule.

The Ligature/Accent Replacement Spec (RP) 16-17

Structure of the RP Spec

The Input String field contains the following entry: $?[::AO::AV::AJ]?[A-Z]

where:

$

Tells composition to look for a floating accent, i.e., an accent
created using the Accent(F2) key.

?[::AO::AV::A]J]

The first character of the floating accent string is one of the ASCII
escape sequences ::AQO, ::AV, or ::A]. This means that the character
is an uppercase bolle (Unicode number 0xF0417), virgule
(Unicode number 0xF0418), or inverted breve (Unicode number
0xF0419).

?[A-Z]

The second character of the floating accent string is an uppercase
letter in the range of Unicode number 0x40 through Unicode
number 0x5A.

Using the Input String field of rule 12, composition looks for a floating accent
where the first character has an Unicode number between 0xF0417 and
0xFF0419 and the second character is an uppercase letter.

The Output String field contains the following entry: [Macm;?[::Ao::Av::Aj];?M

where:

The opening character of a XyMacro.

acm

The Accents (acrm) XyMacro. This XyMacro is in the standard XPP
Macros Spec, _xy_sys.sde.

.
4

The XyMacro argument separator.

?[::Ao::AviAj]

Composition converts the first character of the input string to the
corresponding lowercase character. The Unicode number for the
replacement character is 0x30A (ASCII escape sequence ::Ao),
0xFO2EC (ASCII escapte sequence ::Av), or 0x311 (ASCII escape
sequence ::Aj).

For example, the uppercase virgule (Unicode number 0xF0418) is
converted to a lowercase virgule (0xFO2EC). It then puts the
converted lowercase character into the first argument of the
Accents acm XyMacro.

Composition puts the second character of the input string (the
uppercase letter) into the second argument of the Accents (acm)
XyMacro.

The closing character of a XyMacro.

Using the Output String field of rule 12, composition replaces the uppercase
accents with Unicode numbers 0xF417-0xF419 to the corresponding
lowercase accent (Unicode number 0x30A, 0xFO2EC, or 0x311). It uses this
character as the first argument of the Accents (acrm) XyMacro. That is, this is

16-18 The Ligature/Accent Replacement Spec (RP) Fonts

Fonts

Structure of the RP Spec

the character that composition moves up and properly places over the base
character. Composition then uses the second character of the floating accent
string as the second argument in the Accents (acm) XyMacro (i.e., the
uppercase base character).

Example 2

This example shows the type of rule you may want to add to the rp_sys
Spec.

You want to use the Case Mode (cm) XyMacro to change text to small caps.
Composition changes the lowercase characters to small caps, but still uses

lowercase accents (since uppercase accents are not available in all fonts). If
your font has uppercase accents, you may want to add a rule for using the
uppercase accents over small caps.

Note: If your font has only lowercase accents available (e.g., Type 1 fonts), you
cannot use the RP Spec to place these accents over small caps characters. Refer to
”Accents Over Algorithmic Small Caps” on page 17-1 for information on how to
properly place lowercase accents over small caps.

The following rule replaces lowercase accents over lowercase letters with
uppercase accents over lowercase letters. Case mode then changes the
lowercase letters to small caps letters. The result is uppercase accents over
small caps letters.

The Ligature Mask field contains the following entry: 128

This is a unique entry since it is a power of 2. To use this rule, the Lig/Accent
Replace field of the active rule in the FV Spec must contain 128 (alone or
combined with other entries).

The Input String field contains the following entry:
$?[::Ac::Ao::Avi:Aj:Aki:Al:AaAgAnc:At:Ab::Am::AhiAxc:Ap::Aul?[a-
z]

where:
$ Tells composition to look for a floating accent (i.e., an accent
created using the Accent key [F2]).

?[::Ac::Ao::Av The first character of the floating accent string is Unicode 0x327,
nAjrAki:Al:Aa 0x30A, 0xFO2EC, 0x311, 0x328, 0x313, 0x301, 0x300, 0x315, 0x303,
sAgrAnz:At:Ab 0x306, 0x304, 0x30C, 0x302, 0x308, 0x307, or 0x30B These are
::Am::Ah::Ax Unicode numbers for lowercase accents.

2Ap:Au]

?[a-z] The second character of the floating accent string is a lowercase
letter.

Using the Input String field of this rule, composition looks for a floating accent
string consisting of a lowercase accent over a lowercase letter.

The Ligature/Accent Replacement Spec (RP) 16-19

Structure of the RP Spec

Output String Field
The Output String field contains the following entry:
$7[::AC::AO::AV::AJ::AK::AL::AA:AG::AN:AT::AB::AM::AH::AX::AD::AP::AUJ?

where:
$ Tells composition to output a floating accent.

$?[::AC::AO For the first character of the floating accent string, output the

sAVAJGAK uppercase accent that corresponds to the lowercase accent in the
=AL:AA:AG input string.

::AN::AT::AB

mAM:AH::AX

AD::AP::AU]J?

? Output the second character of the input string as the second

character of the floating accent string (i.e., the base character).

Using the Output String field of this rule, composition outputs an uppercase
accent as the first character of the floating accent string, followed by the
second character of the floating accent string (the lowercase letter). The
Case Mode (cm) XyMacro changes the lowercase letter to an uppercase
letter.

16-20 The Ligature/Accent Replacement Spec (RP) Fonts

Viewing Ligature/Accent Replacements

Viewing Ligature/Accent Replacements

Fonts

You can view information about ligature /accent replacements using;:

® The Line Editor
® The Softkey menu

® Status window

Line Editor

When you are working in the Line Edit window, you can see when ligature
or accent replacements are in effect by the up and down arrows that
surround the characters being replaced. The Expand RP button on the Line
Editor is a toggle switch that controls whether the Line Editor displays only
the input portion of a ligature or expands the display to show both the
input and the output portions of any ligature or other replacements from
the RP Spec. The Expand RP button works the same whether you are using
XML/SGML mode or standard XPP mode.

For example, when in the Line Edit window, you see the input characters:
T4::AAEL

1 Indicates that the characters in between the arrows are being
replaced by something else.

A Indicates that the next character is a floating accent, and the
character following the accent is the base character. This is a 2
piece accented character.

“AA Is the escape sequence for an uppercase acute accent. In the Line
Edit window, the :: represents | (pipe).

E Is the base character, the character that the accent is placed over.

To see the output characters (what replaces the input characters):

¢ Toggle the Expand RP button.
The Line Editor now displays more information:
T4::AAE 2 <acm;;E> 'EE’l

1 These arrows now surround both the input and output characters.
AUAAE Input string.
2 Separates input characters from output characters.

<acm;;E>EE’” Output string.

The Ligature/Accent Replacement Spec (RP) 16-21

Viewing Ligature/Accent Replacements

In this example, the uppercase acute accent (| AA) is Unicode number
0xF041C, which is in the range of characters listed in rule 13 of the RP Spec.
Rule 13 can be used when the font does not have uppercase accents
available and also does not have combined accented characters and
indicates to replace the uppercase accent with the related lowercase accent
and furthermore to use the Accents (acrm) XyMacro to properly position the
lowercase accent. The output string above shows this happening: ::AA is
replaced with ’ as the first argument of the Accents (ac) XyMacro. The
base character, E, becomes the second argument of the Accents (acm)
XyMacro. 'EE’ is generated by the Accents (acm) XyMacro.

Note: The lowercase acute accent has an escape sequence of | Aa and is assigned to
Unicode number 0x301. The reason that ' rather than ::Aa displays in the Line
Edit window is that the XCS Spec specifies to display the vuem ' character instead.
Refer to "The Xyvision Character Set Spec (XCS)”, on page 3-1 for information on
vuem characters.

Softkey Menu

You can also use the Softkey menu to change the display of Ligature/
Accent replacements.

1. Select Display > Other Display >Expand RP On/Off on the Softkey
menu.

2. Bring up the Line Edit window again to see any replacements.

The Status Window

The Status window provides helpful font information for character
replacement. When you place the cursor on a complicated replacement
from the RP Spec (for example, when replacing a floating accent with an
Accents (acm) XyMacro or with a different floating accent), the Status
window displays the names and numbers for the first two characters in the
replacement and font numbers only for the third through fifth characters (if
there are more than two characters in the replacement). For example, if
there are five or more characters in the replacement, the Status window
would show something like Symbol (29)/Times Roman (30)/(30)/(29)/(30).

If you place your cursor on a floating accented character and the font for
the floating accent is different from the font for the base character, the Status
window displays both font name and font number with the same pattern as
previously stated, that is, Symbol (29)/Times Roman (30).

16-22 The Ligature/Accent Replacement Spec (RP) Fonts

Fonts

Viewing Ligature/Accent Replacements

If the font is the same for all the characters of a floating accented character
or replacement, then the Status window displays only one font name and
font number. If the font number of a character can be determined, but there
is no entry for the font in the TSF Spec (that is, composition reports “No
mapping for font number #”), the Status window displays the font
information as ? (#) instead of -none-.

If the Status window displays (VPX ##HHH#) for the Font information, this
indicates that the character is a pseudo character. To see the definition of the
pseudo character, open the Xfontlib entry under STYLE LIBRARIES, click
FASTs, right click ##### and choose View Pseudo Characters. If you
right-click the character in the Line Editor, XPP displays the Unicode value.
You can look up this value in the VPX spec that View Pseudo Characters
creates.

The Ligature/Accent Replacement Spec (RP) 16-23

Viewing Ligature/Accent Replacements

16-24 The Ligature/Accent Replacement Spec (RP) Fonts

Chapter 17

Accents Over Algorithmic
Small Caps

This chapter describes how to adjust the placement of accents over
algorithmic small caps fonts, which often do not contain all the uppercase
accent characters needed.

Fonts Accents Over Algorithmic Small Caps ~ 17-1

Moving Accents Over Characters

Moving Accents Over Characters

In fonts where the small caps are created algorithmically (that is, they are
not true small caps fonts) and the fonts do not contain uppercase accents,
lowercase accents that should display over a glyph crash into the glyph
(overprint). You cannot use the Accents (acm) XyMacro in the RP Spec to
move the lowercase accents up because the Accents (acm) XyMacro is active
only in normal case mode (upper- and lowercase).

Many Type 1 fonts do not include uppercase accents. But, if your font has
uppercase accents available, you can set up the RP Spec to use them instead
of having to do one of the following actions.

If your font does not have uppercase accents , you have a few choices:

® Purchase true small caps fonts
You may be able to purchase or obtain true small caps fonts.
e Use one-piece accented characters

You may be able to use one-piece accented characters. However, these
characters have different Unicode values and therefore must be
accessed by different ASCII sequences than with floating accents.

For example, using a floating accent sequence ”1$$ | Aae” within
algorithmic small caps mode centers a lowercase acute accent
(Unicode x301) over a lowercase e (Unicode x65) that is being
displayed as an algorithmic small caps E. If you enter this syntax in an
ASCII file and use ToXSF to bring the file into XPP, you would see the
following in the Line Editor:

s Aae
but, you would see the following in the XyView if algorithmic small

caps mode is enabled and where the lowercase accent crashes into the
top left of the small caps E (Unicode x45):

E

Note: XPP supports the |$$ syntax in XML/SGML, but RWS does not
recommend that you use it because it produces non-portable XML/SGML.

By contrast, ” | fe” accesses the one-piece accented lowercase character
e acute (Unicode xE9). If you enter this syntax in an ASCII file and use
ToXSF to bring the file into XPP, you would see the following in the
Line Editor:

é
but, you would see the following in the XyView if you were using a
true small caps font:

-

E

17-2 Accents Over Algorithmic Small Caps Fonts

Moving Accents Over Characters

® Set up Pseudofont (PSF) Specs to move the accents up

You can set up Pseudofont (PSF) Specs to move the accents up. The
following section describes how to do this.

Fonts Accents Over Algorithmic Small Caps 17-3

Setting Up PSFs for Correct Accent Placement

Setting Up PSFs for Correct Accent Placement

To set up PSFs:

1. Determine which accents you want to use over small caps. Fonts may
include accents that are positioned above the glyph.

2. Determine which fonts you want to use in small caps, then find the
numbers that have been assigned for each font (look at the
_tsf_system.sde Spec in your font library).

3. In the PTS Spec for each font, print out the rules for the accents. The
widths are typically the same for most accents in a font.

% post/ Master pts 00025 [_ (O] x
File Edit View Insert BSelect Help
File Comment |Pnst Script palatino-roman j
~Tahle Comment |
Font Name |PﬁLHTIND ROMAN
Typesetter Information
Font Map MNumber [25 Units 1000 Style Code |srm
Slant off ¥ Range Min |[1g Range Max [186q
CHAR XC3 CHAR CHARACTER OVERRIDES
| CODE HUMBER WIDTH STYLE CODE SLNT COMMENT
d193 d753 [d333 — ﬂ lc grave accent
d194 d752 d333 — ﬂ lc acute accent
d195 7?59 d333 - +[lc circumflex accent
d196 d755 4333 — ﬂ lc tilde accent
d197 4757 d333 — ﬂ lc macron accent
d198 7?56 d333 - +|[lc breve accent
d199 d761 [d250 — ﬂ lc sup dot accent
dZ200 d760 d333 — ﬂ lc dieresis accent
dZ202 d 747 d333 - +|[lc bolle accent Two accents
dZ03 d746 4333 — ﬂ lc cedilla accent are below the
dzo5 [a76z [1300 — 3[Tc umlaut accent character and
dZ06 d?50 d313 - +||lc hook accent ‘ not nead to be
dza7 XS EEE] — #/[1c hacekscaron accent madified.
£
‘ Ing Comment Field Table 1 of 1 Rule 123 of 155 Fld 3 ‘
|
Figure 17-1 PTS Spec Rules for Accents pts_00025
4. Using the information from the PTS Specs, set up a PSF Spec for each

17-4 Accents Over Algorithmic Small Caps

width. Name the spec to indicate the width (for example, psf_acct333).
Use <mb;30> to move the accent up by 30% of the font height, or
experiment with other values. After placing the accent, move down
the same amount to return to the original baseline (for example,
<mb;-30>). For more information, refer to “The Pseudofont Spec (PSF)”
on page 7-1.

Fonts

Setting Up PSFs for Correct Accent Placement

The following figure shows sample PSF Spec rules.

TF post! Master psf_acc

File Edit View Insert Select Help

File Cnmment|ﬂccents for use with small caps (width = 333) S

~Table Comment |
Font Mame Falatino—ﬂoman

Style Code |snirelmbhxm Units 1000
Range Hin |1g
L Range Hax |[186q

—XCS Number Id?i? Char Width Id333 Style Code

Commands [<mh;30><202 ><mh;-30>
LComment |lowercase bolle accent

~%C3 Number Id?SZ Char Width Id333 Style Code

Commands [<mb;30><{194><{mh;-30>
LComment |lowercase accute accent

~%C3 Number Id?53 Char Width Id333 Style Code

Commands [<mb;30><193><{mh;-30>
| Comment |lowercase grave accent

Ins Comment Field Table 1 of 1 Rule 3 of b Fld 8

Figure 17-2 PSF Spec psf_acct333 Rules

5. For each small caps font, copy the existing FGS Spec to a new number.
To avoid confusion, use a consistent numbering scheme, such as
adding 30,000 to the original number. Edit the new FGS Spec. Modify
the Family Name field to indicate small caps, and add a new rule for the
PSF Spec before the rule for the PTS Spec containing the accents.

The following figure shows a sample FGS Spec.

File Comment

|
[Table comment | 1
Family Name ‘Palatino—Smallcaps Variant Name |[Roman

|| Range: Min Eﬁ$____ Max EEEE__ Units Eﬂi@ﬁ_

Style Code Exact Match

PTS/PSF Spec Style Code Overrides

lacctaas |srm
|ooe25 |srm
|ooe25ex |srm
|00025p5 ‘srm

[End of File]

Ins Comment Field Table 0 of 1 Rule 0 of 4 Ad 1

Figure 17-3 New FGS Spec

6. Run GenFAST on the new FGS Spec to create a new FAST; optionally
update the font_desc file.

Fonts Accents Over Algorithmic Small Caps 17-5

Setting Up PSFs for Correct Accent Placement

7. Edit the master Font Variant Spec. Copy the existing rule and change
the Font Family and Font Variant to a unique set of values and change the
value in the Primary FAST field of the rule using algorithm for the Small
Caps FAST to the new FAST number you selected in step 5.

The following figure shows a sample FV Spec entry, using 30025 as the
new FAST number.

% post/ Master fv post [_ (O] x|
File Edit View Insert 3Select Help

File Comment Fostscript font variant file for the default 35 Postscript fonts 1 ﬁ
Typesetter Minimum Size Incrementlﬂ.ZSq Normal Small Caps Size X E?
LKerning Units per Em |1000 Mormal Ascender Height %lﬁ?
~Comment Ealatinu—SmallCapS

Font Family 6 Kerning Data

Font Variant O Primary FAST 30025 Pairs Filcl

Range Minimum 1y Secondary FAST 10036 Track #1 I@

Range Maximum 186qg Default FAST & Track #2 |0]
Smallcap Size ¥ [normald] Small Caps FAST algorithmd Track #3 IB
LAsc Height * nmormald| LigsAccent Replace |none 4 Track #4 |0

£

Ins Comment Field Table 1 of 1 Rule 33 of 50 Fld 9

Figure 17-4 New Rule in the FV Spec

17-6 Accents Over Algorithmic Small Caps Fonts

Appendix A

Spec Quick Reference

Table A-1 is a quick-reference showing all the font-related specs, spec
mnemonics, spec haming conventions, and the purpose of each spec.

Table A-1 Spec Quick Reference

Mnemonic Spec Naming Conventions Description

FGS Font A five-digit number Lists the PTS and PSF Specs
Generation between 00001 and 65535. for GenFAST to use in
Example: _fgs 00015.sde making a FAST.

FGX Font A five-digit number Includes glyphs, not in a
Generation between 00001 and 65535; PTS or PSF Spec, for
Exception it must be the same inclusion in a FAST.
(optional) number as the correspond-

ing FGS Spec.
Example:_fgx_00015.sde

FvV Font Variant ~ Up to 8 alphanumeric Maps the font specified in
characters. tags or CSS font properties
Example: _fv_doc.sde (using the TSF Spec) and

the Font Family (ff) and
Font Variant (fv) XyMacros
to the FASTs.

Fonts Spec Quick Reference A-1

Table A-1 Spec Quick Reference (Continued)

Mnemonic Spec

Naming Conventions

Description

EFX! FAST (Font
Access Table)

A five-digit number
between 00001 and 65535;
it must be the same
number as the
corresponding FGS Spec.
Example: _fx_00015.sde

Provides all font
information needed for
composition, screen display;,
and output.

The FX file is not accessible
for editing. You can view
the information through the
system-generated VFX
Spec.

KB Keyboard

Map

A single alphanumeric
character (A-Z, a-z, 0-9).

Maps key caps to Unicode
values.

KP Kerning
Pairs
(optional)

Up to 8 alphanumeric
characters, often named
the same as the FGS Spec.

Adds/removes space from
between specified
characters. Source spec file
located in Llibrary.

KP Kerning
Pairs
machine-
readable
(optional)

Up to 8 alphanumeric
characters, often named
the same as the FGS Spec.

Adds/removes space from
between specified
characters. Machine-
readable .x file located in
Llibrary.

PSN PostScript
Name

_psn_unicode.sde
_psn_custom.sde
_psn_ps2xcs.sde

Maps PostScript character
(or glyph) names to the
Unicode character numbers.

PSF! Pseudofont
(optional)

Up to 8 alphanumeric
characters; do not use the
same name as a PTS.
Example: _psf_math.sde

Modifies typesetter output
of glyph(s). Also combines
existing glyphs to create a
new glyph.

PTS Phototypesetter Up to 8 alphanumeric

characters, often the same
name as the corresponding
FGS Spec.

Example: _pts_00015.sde

Maps Unicode numbers to a
manufacturer-assigned
phototypesetter code, also
provides character informa-
tion such as width, style,
etc.

RP Ligature/
Accent
Replacement
(optional)

_rp_sys.sde

Specifies replacing an
accent with another accent
and characters with
corresponding ligatures.
Used with the Ligature/
accent Replacement field in
the Font Variant Spec.

A-2 Spec Quick Reference

Fonts

Fonts

Table A-1 Spec Quick Reference (Continued)

Mnemonic Spec Naming Conventions Description
TSF Typesetter _tsf_system.sde Maps font numbers to font
Font Map names or to an alternate
font number for screen
display. For CSS, maps CSS
font properties to a FAST
and its font name.
XCs Xyvision _xcs_default.sde Assigns each XSF code a
Character Set name, unique ASCII

sequence, optionally
Unicode number(s),
optionally named character
entities, and a string for use
in the Line Editor, spec
fields, etc.

'EASTs are machine-readable only files. The system can generate the VEX and VPX files for you to view.

Spec Quick Reference A-3

A-4 Spec Quick Reference Fonts

Appendix B

Status, Tips, &
Troubleshooting

This appendix describes how to check font status, explains font-related
error messages, and gives tips and hints for font troubleshooting

Fonts Status, Tips, & Troubleshooting B-1

Checking Font Status

Checking Font Status

When editing a division, you can obtain information on fonts by viewing
the Status window.

To display the Status window:

® Select Menu > Status

XPP displays the Status window. The XyView also displays the Status menu
on the Softkey menu. Its options correspond to the radio buttons in the
Status window.

e [ine Status
® Block Status
® Page Status

® General Status

From Line, Block, Page, or General Status, you can get the name of the font
on which your cursor is positioned. (Remember, the Status Window does
not dynamically refresh by moving the cursor with the arrow keys.)

® For example, Font family and variant by name—NotoSerif-Regular
(501). (501) is the Font Map No. field in the TSF Spec, which corresponds
to the PostScript font Name field.

Note: If a “substitute” font is being used for display, the font named in the
Status window has a $ in front of it. If a pseudo character is being used, the
font will be displayed as (VPX #####). Refer topage 16-23|for additional

information.
w Status 2
Cur X: 13.5p Cur Y: 14.8p Font: NotoSerif-Regular (501)
Curs: Main

() Line status () Block Status () Page Status () General Status
General Status

Stories: Main: 0 Galley: 0

Pickups: Main: 0 Galley: 0

Footnotes: Main: 1 Galley: 0

Ses : 68 Conferenced: -none-

Edit Trace: no Delete Mode: true delete
STYLES: Job: s508_css MX: -none- FV: noto
LIBRARIES:

Spec: std-fmt Font: noto Dict: std-dict Graph: default

units @Wp Og Qi Oc Od Om Oz Ok

Figure B-1 Font Information in the General Status Window

B-2 Status, Tips, & Troubleshooting Fonts

Fonts

Checking Font Status

General Status shows the names of the libraries and specs that composition
is currently using for the open division, as defined in the Job Ticket and/or

the Division Ticket

In this example, the Font library is noto.

From Line Status, you can obtain the following information on the font that
is at the present cursor position:

W Status £
Cur X: 14.4p Cur Y: 52.1p Font: NotoSerif-Bold (502)
Curs: Main

() Line Status () Block Status () Page Status () General Status
Line Status

LineX: 4p LineY: 52.1p Quad: left State: Comp

Ind: 0 Meas: 38p Elnd: 0

Famly: 0 Varnt: 1 Hght: 1.5p Width: 1.5p

Ascld: 0.11p DsclLd: 0.6p

Preld: 1.5p Xtrid: 0.1p PostLd: 0.5p

Tag: //doc/hl

H&J: 1 Text: 15.1p Bands: 0.4p LetSp: 0

Keep: -none- Vkeep: start Vjpt: -0.2p Widow: head
Track: 1 Caps: Class: 0 Lang: 1:english
units @p Og Qi Oec Od Om Oz Ok

Figure B-2 Font Information in the Line Status Window

In this example,

—The Font Family number is 0.
—The Font Variant number is 1.
—The Font Height is 1.5p.
—The Font Width is 1.5p.

Status, Tips, & Troubleshooting B-3

Font Messages

Font Messages

The system generates a variety of error messages for fonts. These messages
appear when you run Build FAST, access a division for editing, compose
text, and so on. The messages may appear in the dialog area of the XyView,
the composition log, the print queue log, and so on.

Error messages in the dialog area of the XyView may not show the full
message depending on the size of the dialog area. Use Search > View Log
on the Softkey menu to display complete error messages after composition.
Refer to the XPP document XML Professional Publisher: Managing XPP for
information on viewing messages in the View Log window.

Table B-1 lists the common font error messages and describes the meaning
of each message.

Table B-1 Font Messages

Message Description

Record out of This message may appear when you run GenXCS.
sequence: xsf #### The XCS Spec contains rules with the same XCS
xcs inconsistency (s), field entry. Locate the rule with the specified XCS
cannot continue. code; the XCS field must have a unique entry.
Dup. esc. sed.: This message may appear when you run GenXCS.
xsf #### xcs The XCS Spec contains rules with the same ASCII
inconsistency(s), field entry. XPP has assigned an ASCII character or
cannot continue. escape sequence to each XCS code. Do not modify

this field. If you have modified this field, locate the
rule with the specified XCS code and search for a
rule with the same ASCII field entry. Each ASCII
field must contain a unique entry.

The default FAST This message may appear when you attempt to
number 30 in “fv” open a division. It indicates that FAST 30, which is
record 1 is missing. specified in the first record (rule) of the active FV

Spec, is not present in the font width library (the
“X” library) that is specified in the Job Ticket.

Unspecified This message may appear when you compose a
typesetter character! division. It indicates that Unicode character U+E13
(9) U+E13 (d3603) was input but is not in the current primary,

secondary, or default FAST.

B-4 Status, Tips, & Troubleshooting Fonts

Fonts

Font Messages

Table B-1 Font Messages (Continued)

Message

Description

font family/variant
error (11):
ff,fv,sh,sw=0,7,11,11

One or more of these values (specified either in the
Item Format Spec or by CSS font properties or in an
override macro) is invalid (does not exist in the
active Font Variant Spec). The four values in this
example are ff=0, fv=7, sh=11, sw=11. In this
example, fv 7 does not exist in ff 0 in the active FV
Spec.

Variant 0, family O,
size 10; Missing FAST
or FFVAR entry. Font
family 0, variant O
must be defined in
your Font Variant
Spec.

This message may appear when you access a
division for editing. This message means one of two
things: Either the active FV Spec does not include a
rule for Font Family 0, Variant 0 that includes 10
point, or the FV Spec rule for Font Family 0, Variant
0 points to a FAST that is not present in the font
width library specified in the Job Ticket.

ERROR: No mapping for
font number 30

Indicates that the TSF Spec in the active font width
library does not contain an entry for font 30 (in the
Font Map Number field of the TSF Spec), so XPP
cannot determine the PostScript font name.

Font Messages from Build FAST

Table B-2 Messages when you click the Apply button in Build FAST

Error Message

Description

WARNING: Unencoded
character

charactername, using
0

The Type 1 font AFM source file contains
charactername with a character code (C value) of -1.
This flags the utility to check for any encoding table
which should be applied to the font. The utility then
scans the encoding table named in the Font
Specification window looking for charactername. It
does not find it and therefore gives this glyph a
character code value of 0 in the PTS Spec. If you
need access to this glyph, you can copy the
encoding table to a unique name and substitute this
charactername for a glyph you do NOT need access
to and RERUN the utility with the new encoding
table name specified in the Build FAST window.

WARNING: line 10
field 'fontvar’
(fontname) too long -
limit is 12

This means that the Font Name exceeds the 12-
character limit for the Font Family and Font Variant
The offending name will be truncated. This will be
noticeable in the Status Window display. To see
what the utility has done and edit it if you want,
edit the FGS Spec fields.

Status, Tips, & Troubleshooting B-5

Font Messages

Table B-2 Messages when you click the Apply button in Build FAST (Continued)

Error Message

Description

No
PSN

(character name)

Enter the character name(s) in
psn_custom or psn_unicode in Lsyslib, with an
appropriate Unicode number and rerun Build FAST.

WARNING: Font
contains (number)
kerning pairs; KP
table can only hold
first 6,553,500; rest
will be ignored

The KP table cannot hold more than 6,553,500
kerning pairs.

WARNING: CMap code
(number) collides
with xyps, 0x£f800-
f8ff; characters in
this range will be
ignored.

XPP reserves the code range f800-8ff for its own
use, to define xyps, as allowed by the Unicode
specification. Fonts must not define characters in
this range.

WARNING: fontname
already exists as
font FAST number.

The FAST number you have selected in the Font
Specification window has already been used in this
font width library. If you continue, you will
overwrite the existing one. The utility detects this by
scanning the TSF Spec where it finds the font
number already in use.

B-6 Status, Tips, & Troubleshooting

Fonts

Tips and Hints

Tips and Hints

Fonts

Here is a list of some common problems with fonts and possible causes for

each problem.

Table B-3 Tips and Hints for Fonts

Symptom

Possible Cause

Text appears justified onscreen;
however, it is ragged on the output.

Font is not loaded on the output device.
Either load the font on the PostScript
printer, or download the font on output.

Your PTS glyph widths do not match
the actual font glyph widths.

Text appears ragged onscreen; however,
it is justified on the output.

A substitute font is being used for
screen display in the TSF Spec. The
substitute font has different widths than
the font used for output.

When you enter a character from an
alternate keyboard, a reverse-video
question mark appears onscreen.

The Unicode character is not defined in
any of the FASTs you are using in the
current Font Family and Variant rule of
the FV Spec.

When you try to enter a character from

an alternate keyboard, the system beeps.

The key you pressed is not mapped to a
character or string in the KB Spec.

You do not know the ASCII sequence
required for creating accented
characters.

To obtain the ASCII sequences, you can

either:

1. Look in the xcs_default Spec.

—or—

2. Enter the characters in a division, run
FromXSF, then view the ASCII file.

Lowercase letters in small caps text
appear to be kerned incorrectly.

Set up a separate KP Spec for use with
small caps fonts.

Added a KP entry to the FV Spec but
not seeing any change.

Kerning Pairs Spec does not exist in
Font Width library.

The FV Spec you edited is not the one
that is active (you may have a job-level
FV Spec that is active). To access the
active FV Spec, go into your division
and select Activity, Edit Job Styles, Font
Variant.

Added new FAST and assigned it to FV
7 in the FV Spec. Getting FF/FV error.

Same as previous entry.

Status, Tips, & Troubleshooting B-7

Tips and Hints

Troubleshooting Type of Font

If you have trouble with a particular font, validate that the font is likely to
be an acceptable PostScript font. To do this, run xyprfont.pl from the
operating system command line:

SXYV_EXECS/bin/xyprfont.pl filename [options]

where filename is the font file that you want to check. The xyprfont.pl
program produces a PostScript output file in the current directory. For more
information, refer to “Troubleshooting Fonts” on page 1-23.

You can view the output file using a PostScript viewer or convert it to PDF
and then view it with a PDF viewer.

XPP provides a PostScript viewer. Execute the following at the command
line:

XYV_EXECS/gs/gsx filename.ps
where filename.ps is the output file produced by xyprfont.pl.

Note: If you are running xyprfont.pl in the XYV_EXECS/psres/fonts directory tree,
be sure to remove the .ps file when you finish testing. Otherwise, the next time you
run makepsres, you will receive a warning about an invalid font file.

Troubleshooting Output of OpenTypelTrueType Fonts

If you are downloading OpenType/TrueType fonts to a printer, the printer
must have a PostScript engine with a version number of 2015 or greater. To
check the version number of your printer, you can print the file
XYV_EXECS/sys/od/psversion.ps to it. This will tell you the PostScript
version number of the printer and also if the printer can support Type 42
fonts. The information generated is presented with the following format:

® Product name:

® Product revision:

® PostScript version:

® Support Type 42 fonts?
e Support CMaps?

® Maximum memory:

Mapping Unmapped Open Type Font Glyphs with Psfmtdrv

To map the unmapped glyphs with psfmtdrv (this will not work with divpaf):

B-8 Status, Tips, & Troubleshooting Fonts

Fonts

Tips and Hints

. Create a workspace area for this activity that is outside of the

XYV_EXECS/psres/fonts folder for storing backups and extra files
created during this process.

Copy the fontname.otf or fontname.ttf file to your workspace directory.

Run xyprfont.pl on the font file in your workspace directory. This
will create a PostScript file in this directory.

Distill the PostScript file created by xyprfont.pl either with Adobe
Distiller or by executing %XYV_EXECS%\gs\gs.exe (Windows) or
$XYV_EXECS/gs/gs (Unix) on the PostScript file.

Page through or go to the last pages of the distilled file to see if there
are unmapped glyphs in the font. There may be more than one page of
unmapped glyphs. Mapped glyphs will display in a grid, while
unmapped glyphs will display in a two-column format showing the
glyph itself and its name.

Determine which and how many unmapped glyphs you need to map
manually.

Keep the fontname.ps and fontname.pdf files in your workspace area to
avoid errors the next time makpsres or Font Copy is run. Extra files in
the XYV_EXECS/psres/fonts directory or its subdirectories will cause
error messages when updating the PSres.upr file.

Determine which Unicode range (with values xFFFF and lower) is not
used in the current .cmap file that can accommodate the number of
characters you want to map manually.

Note: If you want to use Unicode values in the “private use” range (such as
xF0001) for use in XPP, there is a slight difference in what you put into the PTS
spec in step 15. If you use Unicode values in the "private use” range for these
characters in XPP, then you need to edit the PTS spec manually; you will not be
able to just modify the .afm file and rerun BuildFAST.

9.

10.

Copy the current cmap file to your workspace area to modify it and
save a backup copy of the original cmap file.

Edit the cmap file adding a range of Unicode values not already in use
in this font.

In the following example, values <f01d>, <fO0le>, and <f01f> are used
to map three unmapped glyphs. Edit the last codespacerange section
of the cmap file as seen in the following example and add the range in
the order shown. Change 3 begincodespacerange to 4
begincodespacerange as a fourth range is being added to this
section. Then, in order, identify the range you are adding, in this case
<f01d> through <f01f>. There can be no more than 100 ranges in each
codespacerange section.

4 begincodespacerange

Status, Tips, & Troubleshooting B-9

Tips and Hints

11.

12.

<0020> <03c0>

<2010> <25ca>

<f01ld> <f0l1lf>

<fb01l> <fb02>

endcodespacerange

You need to add these characters to the end of the file, in order, in a
bfchar section as well. Keep in mind that each bfchar section can
contain no more than 100 characters. Go to a section that holds fewer
than 100 characters, if there is one, and add the new ones with the

codes you have chosen in the correct alpha/numeric order. Otherwise,
add a new section.

56 beginbfchar

<f01ld> /f_1

<f0le> /£f_1

<f0lf> /a.superior
<fb01l> /fi

<fb02> /f1l
endbfchar

Save the cmap file and then copy the modified file to the appropriate
XYV_EXECS/psres/fonts directory.

Note: An alternative to steps 12 through 15, if using the same Unicode value in
XPP as is used in the modified .cmap file, is to copy a backup of the .afm file into
your workspace directory and then edit the .afm file, locate the glyphs being mapped
(at the end of the CharMetrics section) and enter the hex Unicode values being used
where you see UNX 0000. Then run BuildFAST on the modified .afm file for each
FAST that uses the font.

13.
14.

15.

16.

Open the PTS spec for the font on which you are working.

Go to the bottom of the spec, where you will find entries for the
unmapped glyphs.

There will be x0 in the Char Code and Unicode Number fields. For already
mapped glyphs, these values equate to the Unicode value in the grid
you see after running xyprfont.pl and distilling the PostScript file.
Notice the glyph widths for the unmapped glyphs are present in the
PTS spec so you do not need to add them. These values are in the afm
file in the font directory.

Using the values you have chosen for the unmapped glyphs, update
the PTS spec’s Char Code and Unicode Number fields with the Unicode

value you used in the cmap file. Alternatively, if you want to use the
“private use” numbers for XPP, put the “private use” number in the

B-10 Status, Tips, & Troubleshooting Fonts

Tips and Hints

Unicode Number field and the Unicode value from the cmap file in the
Char Code field. For example, for the £_1 glyph in the previous
example, you could enter xF01D in the Char Code field and xF1001 in
the Unicode Number field of the PTS spec to use that Unicode value in
the XPP data.

17. Run GenFAST on the FAST(s) using the modified PTS spec.

Note: Running Font Copy on the font again will overwrite the modified .cmap file
(and possibly the .afm file if it was modified), so it is a good idea to save the original
and modified versions of these files in another location. Also, running BuildFAST
on the font again will overwrite the manually modified PTS spec (unless the .afm
file was modified along with the .cmap file and BuildFAST was used to modify the
FAST).

Fonts Status, Tips, & Troubleshooting B-11

Tips and Hints

B-12 Status, Tips, & Troubleshooting Fonts

Appendix C

Sample Type 1 Font
Encoding Tables

This appendix provides samples of some Type 1 font encoding tables:

Adobe StandardEncoding Table
XPP Extended Character Set encoding table

Symbol Character Set encoding table

Zapf Dingbat Character Set encoding table

Fonts Sample Type 1 Font Encoding Tables C-1

Adobe StandardEncoding Table

Adobe StandardEncoding Table

All Type 1 PostScript fonts have a default encoding table. In Adobe Type 1

Roman text fonts, the Adobe “StandardEncoding” table is the default

encoding table.

The following figure displays the Adobe “StandardEncoding” table.
StandardEncoding Encoding Table

octal

0

1

2

3

4

5

\00x

\01x

\02x

\03x

\04x

&

R

&

\05x

*

+

\06x

N8}

\07x

R Y

\10x

\11x

\12x

glojal= |2~

\13x

\14x

x| lz|e el

\15x

=

\16x

=]

< |z |=|>|<|z|T|V ||

< |0 e |

\17x

< e == =<lo|=|s|o|—=|—|-

N = o N = e

—~ |z |=|o |— v |[Kr|AO

ol il el e R IR Il IR A

W—‘GE@‘—‘C}ZFFJIILH'

]

\20x

\21x

\22x

\23x

\24x

\25x

«

=

\26x

\27x

»

%0

\30x

\31x

\32x

\33x

\34x

\35x

L

E

\36x

\37x

t

SHERISFS

o

B

Figure C-1 Adobe Standard Encoding Table

This table includes glyphs in the 128-character ASCII set (a-z, A_Z, 0-9, and

common punctuation symbols) and some additional glyphs. Such fonts
often contain many more glyphs, such as accented characters and other

publishing symbols. You may access these glyphs through the remaining

C-2 Sample Type 1 Font Encoding Tables

Fonts

Fonts

Adobe StandardEncoding Table

character codes 129-256. The StandardEncoding table does not address all of
these additional glyphs. You can see them in a font’s .afm file with “—1” as
the character code (C value), indicating that they are “unencoded.”

The StandardEncoding table assigns 149 positions. There are 75 positions
available for additional glyphs. There are 32 positions reserved for control
characters—it is, therefore, recommended that you do not assign them
otherwise.

The shaded boxes in this table show the 75 positions that may be filled by
extended encodings.

Sample Type 1 Font Encoding Tables C-3

XPP Extended Character Set Encoding Table

XPP Extended Character Set Encoding Table

XPP used to provide an encoding table called “extended” that extended the
Adobe StandardEncoding table. This “extended” encoding table allowed

you to encode additional glyphs generally found in Type 1 Roman text
fonts up to the 75 available positions not used by StandardEncoding.

The following figure displays the XPP “extended” encoding table:

XPP Extended Encoding Table

octal

0

1

2

3

4

5

6

W0x

W01x

W2x

VW03x

W4 x

R

=

B

W5x

*

\06x

o]

oo |+ |

WO7x

\10x

W1x

\12x

slo|al=|=[~

\13x

\dx

“|xlolm|e|ele|— |1

V15x

\16x

VI7x

\20x

21x

\22x

\23x

i z|e] o =

Holm|mf< ja |~ |= |=lo|= > e == |-

\24x

\25x

N N A R A S E T A

I - (= Ll 0 ol ol Ll S8 B N [[T A B

G S e CRER A e = EH IR E

o (e | W (EE |E o m |

\26x

- el

4 |—f

\27x

V30x

£ gl

k]

o R il o (=] ! il L L R il 2B |- []

[} K3

Iggm.

s (b = @ - |FEc |2 B | =2 (&

- e

Va1x

-3

%

V32X

V33x

= e

W34 x

o

Y35x

o | e | = e |

\36x

ed (=t E=C0 =10 LT

g [|2 e |

V37X

e
i
L
m
1

BFH@E‘”:W’

b A Ll =t

[

Figure C-2 XPP “extended” Encoding Table

The shaded boxes show the 75 glyphs that “extended” added to the
StandardEncoding table.

C-4 Sample Type 1 Font Encoding Tables

Fonts

Fonts

XPP Extended Character Set Encoding Table

In the case of a Standard Type 1 roman text font, if the value in the tsf_system
encoding field was “none” and you were trying to access a character that was
unencoded, the result would be a blank glyph. If you were to use the XPP
“extended” character encoding instead, you would have gotten the
appropriate character. (In XPP, this assumes that you had set up your PTS
Spec appropriately.)

For example, in Helvetica, a lower-case a grave (character code d176) is not
mapped in StandardEncoding and is, therefore, “unencoded”. If, in XPP,
you had set the values as follows:

® encoding = none— you get a blank space.

® encoding = extended—you get the correctly accented character.

Extended PostScript Character Set

The standard Adobe PostScript character set includes approximately 150
characters. The XPP Extended PostScript Character Set included an
additional 75 ISO latin1 characters.

The following table displays the XPP Extended Character Set, that used to
be delivered, by font position (octal) and PostScript Name:

Table C-1 XPP Extended Characters by Font Position and Name

Position Glyph PostScript Name
(octal)

\177 n mu

\200 A Agrave
\201 A Aacute

\202 A Acircumflex
\203 A Atilde

\204 A Adieresis
\205 A Aring

\206 C Ccedilla
\207 E Egrave

\210 E Eacute

\211 E Ecircumflex
\212 E Edieresis

Sample Type 1 Font Encoding Tables C-5

XPP Extended Character Set Encoding Table

Table C-1 XPP Extended Characters by Font Position and Name (Continued)

Position Glyph PostScript Name
(octal)

\213 I Igrave

\214 I Tacute

\215 I Icircumflex
\216 i Idieresis
\217 b Eth

\220 N Ntilde

\221 ¢) Ograve
\222 o Oacute

\223 ¢) Ocircumflex
\224 O Otilde

\225 O Odieresis
\226 i brokenbar
\227 U Ugrave
\230 U Uacute

\231 U Ucircumflex
\232 U Udieresis
\233 Y Yacute

\234 b Thorn

\235 © copyright
\236 ® registered
\237 ™ trademark
\240 * plusminus
\260 a agrave

\265 a aacute

\276 S Scaron

\300 Z Zcaron

C-6 Sample Type 1 Font Encoding Tables Fonts

XPP Extended Character Set Encoding Table

Table C-1 XPP Extended Characters by Font Position and Name (Continued)

Position Glyph PostScript Name
(octal)

\311 ° degree
\314 $ scaron

\321 a acircumflex
\322 a atilde

\323 a adieresis
\324 a aring

\325 ¢ ccedilla
\326 e egrave
\327 é eacute

\330 é ecircumflex
\331 é edieresis
\332 i igrave

\333 i iacute

\334 i icircumflex
\335 i idieresis
\336 il ntilde

\337 0 ograve
\340 0 eth

\342 I oacute

\344 0 ocircumflex
\345 0 otilde

\346 0 odieresis
\347 u ugrave
\354 a uacute

\355 a ucircumflex
\356 u udieresis

Fonts Sample Type 1 Font Encoding Tables C-7

XPP Extended Character Set Encoding Table

Table C-1 XPP Extended Characters by Font Position and Name (Continued)

Position Glyph PostScript Name
(octal)

\357 y yacute

\360 V ydieresis
\362 Ya onequarter
\363 %] onehalf

\364 % threequarters
\366 Y Ydieresis
\367 + divide

\374 o) thorn

\375 X multiply
\376 - minus

\377 Z zcaron

C-8 Sample Type 1 Font Encoding Tables

Fonts

Symbol Character Set Encoding Table

Symbol Character Set Encoding Table

A PostScript Type 1 font may contain a set of characters that are not text
characters, that is, not alphanumeric characters. This is especially true of Pi
fonts, which usually contain a set of characters that are only symbols.

When using Pi fonts, the encoding table entry in the TSF Spec must be set to
“none”, meaning the default internal encoding table of the font is used.

The following figure displays the Type 1 Symbol font Character Set
encoding table. Notice how different the font is from the default encoding
of a text font.

Symbol Encoding Table

octal 0 1 2 3 4 5 6 7
\00x
\01x
\02x
\03x
\04x
\05x
\06x
\07x
\10x
\11x
\12x
\13x
\14x
\15x
\16x
\17x
\20x
\21x
\22x
\23x
\24x
\25x *
\26x
\27x
\30x
\31x
\32x
\33x
\34x
\35x
\36x
\37x

L
R
R

N | %
W+ | #

= > B AR
DO~ v

=1

=

al<le|lFw|zla|Vv ol

3
e lo =1

fay

<€ |P|ITI|IR|€(@|T PO
O 6 P IN | | |W |

~la A R |— M=]|>|"
—|a|>|o]-.
wc'gmHngllml

l

~

N

>

o
N

M D (L |® ||

— 1T > (qlU At [+ e |~
—|7 @< |@|U |5

N el INC s |

—=Tle|g @R || [V |n
2

=M = (N (@8 [8

e Co I F T S OB Y I R

»

Figure C-3 Symbol (non-text) Encoding Table

Fonts Sample Type 1 Font Encoding Tables C-9

Symbol Character Set Encoding Table

Zapf Dingbat Charater Set Encoding Table

The Zapf Dingbat font Character Set encoding table is another example of a

PostScript Type 1 non-text character set. Notice how different these

characters are from the text character sets and from the Symbol character

set.

Zapf Dingbats Encoding Table

octal

0

1

2

3

4

\00x

\01x

\02x

\03x

\04x

X

\05x

9|y

3

\06x

\07x

IS8

\10x

3
ol
Q3

\11x

\12x

* |3

\13x

&% o= x[0|®

\14x

N2

W

\15x

|0 (%|% 0+ |+

\16x

a

oy k%%

MR B AR AE P S BE-RANE b

8@ (OF % 5k |4+ XD

Al IESE AR AR ACEE VA

K3
"

*

w0

\17x

R RE R ECRE SR SR A

I EETEE-BE L DR

H

\20x

\21x

\22x

\23x

\24x

\25x

\26x

\27x

\30x

\31x

\32x

\33x

/Y (Q@|0 @ @ |

\34x

s

\35x

A4

JIYIV| @@ e

CIiflIlL|v]|©@|0 6 e

\36x

4

I’

v
v

e R IEICEICICIE

FIUITI 0@ 6| 0|®|F

\37x

»

LARVREVAR BRRI-NCAC~MCNR S

JIOIZ|V|V|O|Q ©® O Q| €|

TV |y |©®|0® |0 @ ¢

Y

4

Figure C-4 Zapf Dingbat encoding table

C-10 Sample Type 1 Font Encoding Tables

Fonts

Glossary

Accent/Ligature Replacement spec
A font spec that defines replacing an accent with a different accent, characters with the
corresponding ligature, or any character(s) with another character(s). Also referred to as the RP
spec.

alternate keyboard spec
A keyboard spec other than the Standard XPP Keyboard spec (keyboard 0). The system supports
up to 61 alternate keyboard specs. Groups of related characters appear in the XPP-delivered
alternate keyboard specs. You can create an alternate keyboard spec and map the characters you
frequently use to the key caps.

ASCII
The American Standard Code for Information Interchange method of representing characters as
symbols.

ASCII escape sequence
The unique ASCII character sequence RWS has assigned to each character in the XCS spec.

ASCII to XSF file
A file used during ToXSF for converting ASCII format files to XPP format files. The ASCII to XSF
file maps ASCII escape sequences to Unicode numbers.

ascender
The portion of the glyph that extends above the baseline.

ascender height
The distance from the baseline to the top of the ascenders on lowercase letters (or the top of
uppercase letters).

baseline
An imaginary line at the bottom of the ascender of each glyph (excluding the descender and any
extra lead) in a line of type. The baseline serves as a basis for the horizontal alignment of glyphs
and also as a basis for calculating the positions of other text elements.

Fonts Glossary 1

base font
A font whose glyphs are addressed by PostScript character names, as opposed tocharacter
identifiers (CIDs). This term is commonly used to describe OpenType fonts that are not also CID
fonts.

bitmap character
A glyph whose image is designed for a particular point size and is therefore not scalable.

Build FAST
An XPP utility that creates basic font specs based on fonts in the XYV_EXECS/psres/fonts
directory. This is very helpful when you are loading new fonts.

CID
A character identifier—352—used to access glyphs in a CID font.

CID font
A font whose glyphs are addressed by a CID rather than a PostScript character name. CID fonts
generally have hundreds or thousands of glyphs. A CID font may or may not also be an
OpenType font. Non-OpenType CID font filenames may not have a filename extension.

CFF
Compact Font Format—the type of data representation used in a “PostScript-flavored”
OpenType font. It is not the same as Type 1.

CMap
A type of encoding file that accesses hundreds or thousands of glyphs. A CMap that uses CIDs
must be used with a CID font, whether or not it is an OpenType font. A CMap that uses
PostScript character names is usually the preferred way to access glyphs in an OpenType font
that is not also a CID font.

CSS spec
A Cascading Style Sheet (CSS) spec that defines the typographic style of named text elements
(tags), such as doc, h1, section, or figure. Tag names embedded in the text refer the system to
style definitions stored in the CSS spec.

decimal notation
A method of representing a numeric value using base 10.

descender
The portion of the glyph that extends below the baseline. For example, the vertical stroke in the
lowercase letter q.

destination library
The font libraries containing the machine-readable font specs such as the FASTs and, optionally,
the machine-readable Kerning Pair files. The files in the destination libraries can not be edited.
division
The level of the XPP database containing one or more pages of text. Typically, one division
corresponds to one document or one logical portion of a document (for example, a chapter).

Division Ticket
A supporting data spec containing information that the system uses to compose and paginate a
division. Some of the information in the Division Ticket is in addition to the information in the
Job Ticket; some of the information in the Division Ticket is alternative information to that in the
Job Ticket.

em
A unit of type measurement, usually equal to the width of an uppercase M, that is exactly as
wide as the point size being set.

2 Glossary Fonts

embold
A characteristic of type where the characters are set in heavier lines of type. For example, bold.
The system allows three levels of electronic emboldening for screen display and output of
characters (if the output device has emboldening capability).

em dash
A dash that is equal in width to an em space.

em space
A fixed amount of blank space, equal in width to an em in the current point size. The space is not
altered when the line is justified.

FAST Generation Exception spec
A font spec that defines a glyph(s) to include in a FAST that is either not in the specified PTS/
PSF specs or is an exception to the glyphs in the specified PTS/PSF spec. Also referred to as the
FGX spec, it must have the same name as the FAST Generation spec.

FAST Generation spec
A font spec that defines the PTS and PSF specs from which to include glyphs and the style codes
to include/exclude when building a FAST using the GenFAST program. Also referred to as the
FGS spec.

FAST
A Font Access Table— a machine-readable file produced by running the GenFAST (Generate a
FAST) program. The FAST contains the glyph widths and glyph access information needed for
composition, display, and output.
You cannot edit, view, or print a FAST. The viewable versions of the FAST are the system-
generated VEX and VPX specs.

field notation
Representing numeric values within spec fields in decimal, hexadecimal, or octal.

FGS spec
See FAST Generation spec.

FGX spec
See FAST Generation Exception spec.

floating accent
An accent that is centered over the base glyph.

font
A complete assortment of alphanumeric glyphs and special glyphs grouped together according
to their unique appearance or style.

Font Access Table
See FAST.

Font Copy
An XPP utility that copies font files into the XYV_EXECS/psres/fonts directory tree and makes
them available to XPP by adding their names to the PSres.upr file. For OpenType fonts, Font
Copy also creates an AFM and a CMap file.

font descriptor file
A file containing a list of the FASTs, by family and variant name and number, that are available
in a destination font width library to represent your fonts available with that font library.

Fonts Glossary 3

Font download table
A font download table is a simple text file, and may be created and/or modified using any ASCII
or text editor.

You need font download tables to enable/disable font downloading by font when you generate a
PostScript file in XPP (PS to file and PS to PDF file) or output to a PS device using
psfmtdro.

font family
A set of fonts that share certain visual characteristics that include shapes of serifs, relative
position of thick and thin strokes, and unique decorative characteristics. For example, NotoSerif,
NotoSans, NotoSansMono.

font height
The total distance from the top of a font’s highest ascender to the bottom of the font’s lowest
descender (i.e., the vertical space). Also referred to as point size.

font width library
A library containing the FAST.

font name
The name of the font, for example, NotoSerif-Regular, NotoSans-Medium, NotoSansMono-
Regular, and so on.

font specs
The set of specifications defining the fonts, glyph widths, and other information needed to access
fonts on an XPP system.

font variant
The name (or associated number) of the variant, for example, bold, medium, italic, and so on.

Font Variant spec
A spec that maps the fonts specified in the tags or by CSS font properties or Font Family (ff)
XyMacro and Font Variant (fv) XyMacro to the FASTs. Using the rules in the Font Variant spec,
you can also specify a Kerning Pairs (KP) spec, set up kerning tracks, specify percentages for the
height of small caps and ascenders, and specify which rules to use in the Accent/Ligature
Replacement (RP) spec. The Font Variant spec is also referred to as the FV spec.

font width
The horizontal measure of an em in the current point size, usually the same as the font height.

FV spec
See Font Variant spec.

GenFAST
The Generate a FAST program. This program creates a FAST by combining information from the
PTS and PSF (if any) specs referenced in the specified FGS spec and corresponding FGX spec (if
any). GenFAST reads the specs, selects the glyphs, and puts the information in the FAST in order
by Unicode number.

GenXCS
The Generate XCS program. This program creates four files — the ASCII to XSF file (two
versions — one machine-readable only, the other, viewable), the Xyvision to ASCII file (machine-
readable version only), and the XSF to Terminal file (machine-readable version only). The system
uses these files when running ToXSF and FromXSF and for displaying characters in the Line Edit
window and spec fields.

hexadecimal notation
A method of representing a numeric value using base 16.

4 Glossary Fonts

italic
A form of printing where the glyphs are slanted. For example, italic. See also roman.
Item Format spec
A style spec that defines the typographic style of named text items (tags), such as subhead, list,

footnote, or caption. Tag names embedded in the text refer the system to style definitions stored
in the Item Format spec. The Item Format spec is also referred to as the IF spec.

Job Ticket
A spec that acts as the link between a job and the specs that define its style. The Job Ticket
identifies the style specs, fonts, and dictionaries for use in processing a job. It also identifies the
graphics libraries for the job.

KB spec
See Keyboard spec.

kern
To reduce the amount of space (kerning) between specified characters. (Reverse kern is to add
space.)

kerning
The adjustment of white space between characters. The system can apply pair kerning and/or
track kerning. See also pair kerning, track kerning.

kerning pair
A pair of characters between which you modify the amount of white space.

Kerning Pairs spec
A spec defining pairs of characters (kerning pairs) and the amount of space to add or remove
between them. Also referred to as the KP spec. When edited and stored, a post processor creates
a machine-readable kerning pairs file and places it in the Kfontlib directory.

Keyboard spec
A spec mapping keystrokes to Unicode numbers (so you can enter characters in a division) and
character strings. A character string can consist of tags and XyMacros as well as characters. Also
referred to as the KB spec.

Klibrary
The destination library for the machine-readable versions of the Kerning Pairs specs. If the KP
specs are in the font library, the library name is the same as the source font library name. If the
KP specs are in a separate library, the library name is the same as the name of the source library.
This name must be specified in the Pair Kerning Library field of the Job Ticket.

KP spec
See Kerning Pairs spec.

ligature
A combination of characters, usually with less space between them, that the system treats as one
character. For example, ff.

Llibrary
The source library for the font specs and, optionally, the Kerning Pairs specs.

machine-readable
The versions of the FAST and KP files that the system actually reads and processes. You can not
directly view or edit machine-readable files.

Fonts Glossary 5

macro
A command embedded within text that makes local exceptions or changes to the typographic
style of a text item or component in a division. A macro consists of a begin character, a
mnemonic, and an end character. It may also contain one or more arguments. Macros include
XyMacros (a set of macros provided by XPP) and user-defined macros. See also XyMacro. In
XML/SGML, macros embedded in content take the form of processing instructions.

main font library
Used with numbered font libraries, the main library wass usually named for the output device
that used the fonts. The main library contained specs such as the PTS and FGS specs for Pi fonts.
Typically only main libraries are used.

mean line
A horizontal line placed at the height of a lowercase x.

numbered font library
One of a group of font libraries with related names used when one output device had more than
250 fonts. Numbered libraries consisted of a main library named for the output device that used
the fonts and additional font libraries named by appending a number to the end of the name of
the main library. The main library usually contained specs such as the PTS and FGS specs for Pi
fonts. The additional libraries usually contained specs such as the PTS and FGS specs for text
fonts. Typically numbered libraries are no longer used anymore.

octal notation
A method of representing a numeric value using base 8.

OpenType font
A type of font designed to be platform-independent and contain hundreds or thousands of
glyphs. OpenType fonts may contain PostScript (CFF) or TrueType font data, both of which are
supported by XPP. An OpenType PostScript font may be a base font or a CID font. OpenType
font filenames have a .otf or a .ttf filename extension.

pair kerning
Adjusting the amount of space between specified pairs of characters. The character pairs are
specified in the KP spec.

path prefix
The path to a directory under which a collection of data resides.

Phototypesetter spec
A spec that maps each vendor-assigned character code to a Unicode number and provides
information on the glyph width, style, and so on. Also referred to as the PTS spec.

Pi character
Glyphs that are not among the alphanumeric set, such as boxes, arrows, triangles, math
characters, and so on.

pica
A linear measurement of type. There are 12 points to a pica, 6 picas to an inch.

point
A unit of measurement used to specify type size. One point equals approximately .0138 inch, or
Y12 of a pica.

point size
The total vertical space measuring from the top of a font’s highest ascender to the bottom of the
font’s lowest descender. Also referred to as font height.

6 Glossary Fonts

PostScript Name spec
A spec for mapping PostScript character names to Unicode numbers. Most character names are
mapped in the _psn_ps2xcs.sde spec, any custom character names can be mapped in
_psn_custom.sde or _psn_unicode.sde.

Pseudofont spec
A spec for defining glyphs whose output characteristics you have modified. For example, in
large point sizes, the open parenthesis looks too wide. In the Pseudofont spec, you can specify
the open parenthesis and reduce its width. Also referred to as the PSF spec.

PSF spec
See Pseudofont spec.

PSN spec
See PostScript Name spec.

PTS code
The character access code preceded by a letter denoting the notation (d for decimal, x for

hexadecimal, o for octal). Use the vendor-provided character access code as the entry for the PTS
Char Code field.

PTS spec
See Phototypesetter spec.

resolution
The number of dots per inch used to depict characters onscreen or on a particular output device.

roman
A form of printing where the glyphs are upright. See also italic.

RP spec
See Accent/Ligature Replacement spec.

sans serif
Not having the short strokes added to the basic strokes needed to represent characters. See also
sans serif typeface, serif, serif typeface.

sans serif typeface
A form of printing in which the glyphs do not have serifs added to the basic strokes needed to
represent characters. For example, sans serif. See also serif, serif typeface, stroke.

serif
A short stroke added to the basic strokes needed to represent a character. Glyphs with serifs are
referred to as being in a serif typeface. For example, A represents the capital letter a using the
necessary basic strokes. With the serifs, the letter appears as A. See also sans serif, sans serif
typeface, serif typeface, stroke.

serif typeface
A form of printing in which the glyphs have serifs added to the basic strokes needed to represent
the character. For example, serif. See also stroke, sans serif, sans serif typeface, serif.

slant
Electronically slanting glyphs to give them an italic appearance. You can slant roman glyphs; you
can also give italic glyphs more slant. See also italic and roman.

small caps
A font in which all the lowercase alpha glyphs are capital letters but are the same size as the
x-height.

Fonts Glossary 7

source library
The font library (or numbered libraries) containing the source font specs used to generate the
FASTs and machine-readable Kerning Pair files. The specs in the source library are editable.

stroke
The basic lines needed to represent a character. See also serif.

style code
An alphabetic symbol XPP has assigned to denote the weight and style of glyphs. For example,
the style code r means roman, the style code /» means heavy.

style spec
The set of specifications describing the overall appearance of the divisions within a job. Style
specs determine font types, font sizes, page layouts, spacing, and all other physical attributes of
the finished document.

Style specs include the Item Format (IF) spec, the Page Column Override (PC) spec, the Page
Layout (PL) spec, and so on. The font specs (the Phototypesetter [PTS] spec, the Pseudofont spec,
and so on) are a complement of the style specs.

track kerning
Adjusting the amount of space between all glyphs. You specify track kerning in the Font Variant
spec.

TrueType font
See OpenType font.

TSF spec
See Typesetter Font Map spec.

Type 1 font
The oldest type of PostScript font, now deprecated in XPP. Glyphs are addressed in a Type 1 font
via an old-style encoding. This cannot address more than 256 different characters.

Type42 font
XPP converts a TrueType font into a Type42 font for the PostScript workflow, since PostScript
does not natively support TrueType fonts. When a TrueType font contains no glyph names, XPP
creates a permanent Type42 font (.t42) file in the XYV_EXECS/psres area, along with a special
AFM file that will work with such a font, that are needed for the PostScript workflow. XPP uses
the ttftotype42 utility to convert TrueType fonts into Type42 fonts.

Typesetter Font Map spec
This spec, also referred to as the TSF spec, maps a FAST number to a PostScript font name and
encoding. XPP uses the information in the TSF spec when viewing or outputting text.

variant
The weight (light, medium, bold, and so on) and attributes (roman, italic, small caps, and so on)
of a particular font family. For example, regular and italic are variants of NotoSerif.

VEX spec
The viewable version of a FAST. The VEX spec contains a rule for each non-pseudofont glyph;
the rules are in order by Unicode number. See also VPX spec.

VPX spec
A viewable file containing information on pseudofont (customized) glyphs from a FAST. See also
VEX spec.

vuem codes
Numerical codes that XPP has assigned to special characters that are required on the XPP system,
such as for tags, pgrafs, and macros.

8 Glossary Fonts

XCS number
A unique number that XPP has assigned to some characters. The Xyvision Character Set spec
contains entries for more than 4,000 characters to define ASCII sequences, and optionally
Unicode values and named character entities for those characters.

XCS spec
See Xyvision Character Set spec.

x-height
The distance from the baseline to the mean line. This is the height of a lowercase x.

XSF
The electronic format in which XPP document pages are stored.

XSF to ASCII file
A file used during FromXSF for converting XSF files to ASCII format files. The Xyvision to ASCII
file maps Unicode numbers to ASCII escape sequences. When processing the XSF file, the system
reads the file and replaces the Unicode number with the corresponding ASCII sequence.

XSF to Terminal file
A file containing information such as the Unicode number and the contents of the Ascii field from
the XCS spec for each character. The system cannot represent all characters in the Line Edit
Window or in spec fields. In these cases, the system uses the information in the XSF to Terminal
file. The system searches the file and displays the ASCII string that corresponds to the Unicode
number.

XyMacro
Any macro designed and documented for XPP and furnished with the XPP system. XyMacros
perform a variety of tasks, such as quadding a line or drawing a box. You can use XyMacros to
change or override typographic parameters defined in the style specs. A XyMacro must contain a
begin character, a mnemonic, and an end character. It may also contain one or more arguments.
XyMacros provide a flexible way to meet specific typographical changes, and to produce highly
individualized single pages or exception pages. See also macro.

Xyvision Character Set
A standard set of more than 4,000 characters. The XCS spec maps each character to an XCS
number and to an ASCII string, and optionally to Unicode values and named character entities.

Xyvision Character Set spec
A spec containing definitions for more than 4,000 characters. Each character has a unique
Xyvision Character Set (XCS) number. For each XCS number, the spec assigns a name, a unique
ASCII character sequence, a character for the system to use when it cannot display the actual
character (e.g., in the Line Edit window and in spec fields), and optionally Unicode values and
named character entities. Also referred to as the XCS spec.

Xyvision Standard Format

A system of using numbers to represent symbols and characters. These numbers are Xyvision
Character Set (XCS) numbers. See also XCS number.

Fonts Glossary 9

10 Glossary Fonts

A

Accent placement 17-4

accented characters in XML/
SGML 17-2

Accents over small caps 17-2

Accents 16-7

Adobe Font Metrics files 6-2

15-5

AFM files See Adobe Font
Metrics files

Alternate Display Font 13-4

Alternate keyboard specs 4-2

Asc Height % 12-12

B

Build FAST 1-10
running it 1-10

C

Char Code 6-9 10-4

Character Width 6-10 7-7

Character width 2-3

Character Width 10-4

Commands 7-7

Comment 6-11 7-7 10-4 12-10
13-4 15-9

create specs 5-5

CSS 13-5

Custom characters 3-10

Customizing characters 7-11

Fonts

D

Decimal 5-11

Default FAST 12-13

delete libraries 5-4

Description 8-5

Display and output 2-12
Accent/Ligature

Replacement spec 2-12
division ticket 2-12
FAST spec 2-12
Font Variant spec 2-12
Item Format spec 2-12
Job Ticket 2-12
Kerning Pairs Spec 2-12
Keyboard Map spec 2-12
required specs 2-12
Xyvision Character Set spec
2-12

Displaying characters 4-4
in the Line Edit window 4-5
three-character escape

sequences 4-5
duplicate libraries 5-4

E

editing 16-5
encoding table
modifying 1-27
Encoding Tables for PostScript
fonts 14-2
Encoding Type 13-5
Encoding 13-5
Encoding Table Name 13-5
ensuring you have proper

Index

fonts 1-2
Extended PostScript character
set C-5

F

Family Name 9-8
FAST Generation Exception
Specs 10-2
FAST generation process 11-2
FAST Generation Specs 9-2
9-12
naming 9-4 10-3
structure 9-7 10-3
FASTs See Font Access Tables
FGS Specs See FAST
Generation Specs
FGX Specs See FAST
Generation Exception
Specs
Field notation 5-11
File Comment and Table
Comment 16-13
File Comment 8-4
Font Access Tables 11-9
listing all in a font library
11-11
verifying correct widths
11-15
Font Copy
running it 1-7
when to use 1-7
font descriptor file 11-11
Font Download Tables
when to add a font to a font

Index

i

download table 2-10
Font Family 12-10
Font Map No. 13-4
Font Map Number 6-6
Font Name 6-5 7-4
Font specs 5-6
naming 5-7
when to edit 5-9
Font Variant Specs 12-1
naming 12-6
structure 12-7
when to edit 12-5
Font Variant 12-11
Font Width libraries 5-3
multiple 5-3
naming 5-3
Source and destination 5-2
Font Map # 10-4
Font Slant 10-4
From XSF 3-6
FV Specs See Font Variant
Specs

G

GenFAST 11-2
example 11-5
Phototypesetter Spec 6-2
when to run 11-2

H
Hexadecimal 5-11

I

Input String and Output String
16-13

K

KB Spec See Keyboard Map
Specs
Kern Amount 15-9
Kerning Data: Pairs File 12-15
Kerning Data Track #1 - #4
12-16
Kerning Pairs File
how composition uses it
15-3
Kerning Pairs Spec 15-1
editing 15-4
kerning pairs libraries 15-6
naming 15-7
kerning pairs test utility 15-10

ii Index

Kerning Units per Em 12-8
Kerning 15-2
character pairs 15-3
pairs libraries 15-6
track 15-3
Keyboard Map specs
rules 4-9
structure 4-7
updating 4-17
when to modify 4-12
Keyboard Map Specs 4-2
XCS numbers 4-2
keyboard mappings 4-14
print_kb 4-14
KP Spec See Kerning Pairs Spec
kp_pairs utility 15-10

L

library
delete 5-4
duplicate 5-4
rename 5-4
Ligature Mask 16-14
Ligature/Accent Replacement
Spec 16-1 16-5
how composition uses it
16-3
Line Edit window 16-21
replacing accents 16-3
replacing characters with a
ligature 16-3
rule examples 16-16
standard 16-6
viewing ligature/accent
replacements 16-21
Ligature/Accent Replacement
12-14
Ligatures 16-6
Line Edit window 16-21
Loading large fonts 14-2

M

makepsres 1-27

Mapping a character or a string
to a key cap 4-13

.pfa 1-3

pfb 1-3 ii

Move baseline 17-4

N

Name 13-4
PostScript Font Name 13-4

Normal Ascender Height % 12-9
Normal Small Caps Size % 12-8

O

Octal 5-11
Output device fonts 2-4
how the system uses them
2-4

P

Phototypesetter 6-2
GenFAST 6-2
Phototypesetter Spec 6-1
Phototypesetter spec 6-5
header 6-5
naming 6-4
rules 6-5
structure 6-5
Phototypesetter Spec 6-2
understanding 6-2
PostScript Font Name 13-4
PostScript fonts 2-4
standard 35 2-4
when to download 2-9
PostScript Name Spec 8-2
psn custom 8-2
psnps2xcs 8-2
PostScript 6-2
Adobe Font Metrics files 6-2
encoding tables 14-2
extended character set C-5
small cap fonts 17-2
uppercase accents 17-2
Primary FAST 12-13
Printer Font ASCII 1-3
Printer Font Binary (.pfb 1-3
print_kb 4-14
problem scenarios 1-27
PS Name 8-5
Pseudofont Specs 7-1
examples of modifying
characters 7-11
moving accents up 17-3
naming 7-3
structure 7-3
PSEF Spec See Pseudofont Specs
PSRESOURCEPATH 1-27 2-9
PSres.upr 1-5 1-27
PTS Spec See Phototypesetter
Spec

Fonts

PTS/PSF Spec 9-10

R

Range Max 6-7 7-6

Range Minimum/ Range
Maximum 12-12

Range: Min/Max 9-8

Range Min 6-7 7-6

Relative Kerning Units per Em

15-8

rename libraries 5-4

Replacing accents 16-3

Replacing characters with a
ligature 16-3

RP Spec See Ligature/Accent
Replacement Spec

Rule Comment 16-16

Rule Field: 1st Char and 2nd
Char 15-8

S

Secondary FAST 12-13
Slant 6-11
Slant 6-6
Small Caps FAST 12-13
Smallcap Size % 12-12
Software keyboards 4-2
alternate 4-2
standard 4-2
specs
create new 5-5
Font Variant 1-20
Standard keyboard spec

Fonts

(keyboard 0) 4-2
Style Code Exact Match 9-9
Style Code Overrides 9-11
Style Code 6-8 7-4
Style Code 6-11 7-7

T

Table Comment 8-4
ToXSF 3-5
Troubleshooting 1-23
TSF Spec See Typesetter Font
Map Spec
Type 13-5
Encoding Type 13-5
Typesetter Font Map Spec 13-2
naming 13-2
when needed 13-2
Typesetter Minimum Size
Increment 12-8
Type 1 encoding
non-standard 14-3
Type 1 fonts
validating 1-23

u

unencoded characters 14-2
Unicode Number 8-5

Unicode Number 6-10 7-7 10-4
Units 9-9

Units 6-7 7-6 10-4

using the Line Editor 16-21
using the Softkey menu 16-22

|%4

Variant Name 9-8

VEX Spec 11-9

Viewing a FAST 11-9

Viewing Ligature/Accent
Replacement

Viewing Ligature/Accent
Replacements

X

XCS Spec See Xyvision
Character Set Spec
XCS Spec 3-13
structure 3-13
when to view 3-3
XSF See Xyvision Standard
Format 2-2
xyprfont example 1-24
xyprfont B-8
Xyvision Character Set Spec
3-2
assigning a custom character
3-10
Xyvision Standard Format 2-2
codes 2-2
Keyboard Map Specs 4-2
XCS numbers 3-2

Index iii

iv Index Fonts

RWS Group
201 Edgewater Drive
Wakefield, MA 01880-6216

[www.rws.com|

https://rws.com

	Part I Installing Fonts
	Chapter 1 Installing Fonts
	Understanding the Installation Process
	Obtain the Proper Fonts and Font Files
	Type1 Base Fonts
	Type1 CID Fonts
	OpenType Base and CID Fonts
	Putting Fonts in the Correct Directories
	Font Directories

	Using Font Copy
	Running Font Copy

	Using Build FAST
	Running Build FAST
	Warning/Error Messages from Build FAST
	After Running Build
	Follow-up for Text Fonts
	Follow-up for Pi Fonts
	Resolving Unidentified PSN Names During Build FAST Processing

	Troubleshooting Fonts
	Troubleshooting Tips
	Verifying that You Have a Valid Font File
	PostScript Type1 Base Font
	Type1 CID Font
	OpenType Font
	Viewing Output File
	Modifying the Encoding Table
	Verifying the Directory Structure

	Part II Understanding XPP Fonts and Font Specs
	Chapter 2 Introduction to Fonts
	Understanding Xyvision Standard Format
	Xyvision Standard Format (XSF)
	Xyvision Character Set (XCS)
	The Conversion Process

	PostScript Fonts
	Standard 35 PostScript Type 1 Base Fonts
	XPP-delivered Noto and Pi OpenType Fonts
	Embedding Fonts
	PSRESOURCEPATH Environment Variable

	Font Download Tables
	Format of an Enable Font Download Table
	Font Download Table (table_1)
	Creating Custom Font Download Tables
	Adding Fonts to Your Font Download Table
	Activating Your Enable Font Download Table

	Specs Needed for Display and Output
	How the System Uses the Specs
	When Do I Need to Edit Font Specs?
	How Do I Create New Font Specs?

	Unicode Capabilities

	Chapter 3 The Xyvision Character Set Spec (XCS)
	Understanding the XCS Spec
	When to View the XCS Spec
	Accessing the XCS Spec from PathFinder
	Accessing the XCS Spec from the Operating System

	Learning About the Files Generated from the XCS Spec
	ASCII to XSF Files
	XyASCII escape sequences
	XSF to ASCII File
	XSF to Terminal File

	Obtaining Updates to the Standard XCS Spec
	Copying an XCS Spec
	Updating the XCS Spec

	Modifying the XCS Spec
	Editing or Adding a Named Character Entity String
	Editing or Adding a Unicode Value
	Assigning a Custom Character
	Editing the Name and Description Fields
	Running GenXCS
	Locating Unused XyASCII Sequences

	Understanding the Structure of the XCS Spec
	XCS Spec Fields
	Header Fields
	Rule Fields
	Print XCS Layout

	Chapter 4 The Keyboard Map Spec (KB)
	About Keyboards and Key Caps
	Standard and Alternate Keyboards
	Displaying Characters
	Difficulty Displaying Characters

	The Keyboard Spec (KB)
	Structure of the KB Spec
	Header Fields
	Rule Fields
	Organization of KB Spec Rules

	Modifying KB Specs
	When Do I Need to Modify KB Specs?
	Modifying an Existing KB Spec
	Creating a New KB Spec
	Mapping a Character or a String to a Key Cap
	Print a Keyboard Mapping

	Updating KB Specs
	Copying New Keyboard Specs
	Copying Individual KB Specs

	Chapter 5 Font Libraries and Specs
	Managing Font Libraries
	Source and Destination Font Libraries
	Naming Font Libraries
	Do I Need More Than One Font Library?
	Font Libraries in PathFinder
	File System Location
	Accessing Font Libraries

	Managing Font Specs
	Naming Font Specs
	Accessing Font Specs
	When to Edit Font Specs
	Copying Font Specs through PathFinder
	Copying a Spec to the Same Library
	Copying a Spec to a New Library
	Field Notation
	Changing Field Notation
	Using Field Notation
	Header and Rule Fields
	Editing Spec Fields
	Overriding PTS, PSF, and FGS Header Fields

	Chapter 6 The Phototypesetter Spec (PTS)
	Understanding the PTS Spec
	Accessing PTS Specs
	Delivered PTS Specs
	AFM Files
	Kerning Data
	OTF Files
	The Relationship Between PTS Spec and PSN Spec for Type1 Fonts
	Naming a PTS Spec
	Structure of a PTS Spec
	Header Fields
	Rule Fields

	Chapter 7 The Pseudofont Spec (PSF)
	Understanding the PSF Spec
	Accessing PSF Specs

	Setting Up PSF Specs
	Naming a PSF Spec
	Structure of a PSF Spec
	Header Fields
	Rule Fields
	Pseudofont Commands

	Examples of Defining Pseudo Characters
	Example 1
	Obtaining information from the PTS Spec
	Calculating the custom pseudo character width
	Writing the Commands field entry
	Assigning a Unicode Number
	Example 2
	Obtaining information from the PTS Spec
	Calculating the pseudo character widths
	Writing the Commands field entries
	Assigning Unicode Numbers

	Chapter 8 The PostScript Name Spec (PSN)
	The PSN Spec
	psn_2xcs Spec
	psn_custom Spec
	The Build FAST Process
	Accessing the PSN Spec
	The PSN Spec Fields

	Chapter 9 The FAST Generation Spec (FGS)
	Understanding the FGS Spec
	Delivered FGS SpecsXPP delivers FGS Specs to the
	Accessing the FGS Spec
	When to Edit FGS Specs
	GenFAST
	Running GenFAST

	Setting Up FGS Specs
	Naming an FGS Spec
	Structure of an FGS Spec
	Header Fields
	Rule Fields
	Examples of Style Code Overrides Field Entries
	Example 1
	Example2

	Chapter 10 The FAST Generation Exception Spec (FGX)
	Understanding the FGX Spec
	Accessing the FAST Generation Exception Spec

	Setting Up FGX Specs
	Naming an FGX Spec
	Structure of an FGX Spec
	Header Fields
	Rule Fields

	Chapter 11 Creating and Viewing FASTs
	The FAST Generation Process (GenFAST)
	When Do I Run GenFAST?

	How GenFAST Reads the Font Specs
	Example of GenFAST

	Running GenFAST
	Font Access Tables (FASTs)
	Viewing Characters in a FAST
	Viewing Pseudo Characters in a FAST

	Listing All FASTs in a Font Library
	Verifying Correct Widths in FASTs
	Before Running the Font Width Test Utility
	Running the Font Width Test Utility on a Single FAST
	Running the Font Width Test on Multiple FASTs
	Using the Command Line
	Using PathFinder
	Correcting Width Errors

	Chapter 12 The Font Variant Spec (FV)
	Understanding the FV Spec
	Specifying an FV Spec
	When to Edit an FV Spec

	Setting Up an FV Spec
	Naming an FV Spec
	Accessing an FV Spec
	Structure of an FV Spec
	Header Fields
	Rule Fields

	Chapter 13 The Typesetter Font Map Spec (TSF)
	Understanding the TSF Spec
	When do I Need a TSF Spec?
	Naming the TSF Spec
	How XPP Uses the TSF Spec

	Setting Up the TSF Spec
	Accessing the TSF Spec
	Structure of the TSF Spec
	Header Fields
	Rule Fields

	Chapter 14 Encoding Tables
	Encoding Tables for PostScript Fonts
	Non-Standard Type1 Font Encodings

	Reconciling Unencoded Characters for Type1 Fonts
	Handling More than 256 Glyphs
	Unencoded Characters Beyond the 75 XPP Used to Provide
	Reconciling a Few Unencoded Characters
	Reconciling Many Unencoded Characters

	Chapter 15 The Kerning Pairs Spec (KP)
	Understanding the KP Spec
	Differentiating Between the KP Spec and the KP File
	How Composition Uses the KP File
	When to Edit KP Spec
	Delivered KP Specs
	Kerning Pairs Data in Type1 Font AFM Files

	Kerning Pairs Libraries
	KP Specs in the Font Spec Library

	Setting Up a KP Spec
	Naming a KP Spec
	Accessing KP Specs
	Structure of a KP Spec
	Header Fields
	Rule Fields

	Generating Kerning Pairs Test Divisions
	Running the kp_pairs Utility
	Notes About the Utility
	Related Information

	Chapter 16 The Ligature/Accent Replacement Spec (RP)
	Understanding the RP Spec
	Unicode Non-spacing Marks
	Replacing Accents
	Replacing Characters with a Ligature
	How Composition Uses the RP Spec
	How Composition Uses the Lig/Accent Replace Field
	Accessing the RP Spec
	Editing the RP Spec

	The Standard RP Spec
	Ligatures
	Accents
	Lower and Uppercase Accents in Font
	Lowercase Accents Only in Fonts

	Structure of the RP Spec
	Header Fields
	Rule Fields
	Examples of RP Spec Rules
	Example 1
	Example 2
	Output String Field

	Viewing Ligature/Accent Replacements
	Line Editor
	Softkey Menu
	The Status Window

	Chapter 17 Accents Over Algorithmic Small Caps
	Moving Accents Over Characters
	Setting Up PSFs for Correct Accent Placement

	Appendix A Spec Quick Reference
	Appendix B Status, Tips, & Troubleshooting
	Checking Font Status
	Font Messages
	Font Messages from Build FAST

	Tips and Hints
	Troubleshooting Type of Font
	Troubleshooting Output of OpenType/TrueType Fonts
	Mapping Unmapped Open Type Font Glyphs with Psfmtdrv

	Appendix C Sample Type1 Font Encoding Tables
	Adobe StandardEncoding Table
	XPP Extended Character Set Encoding Table
	Extended PostScript Character Set

	Symbol Character Set Encoding Table
	Zapf Dingbat Charater Set Encoding Table

	Glossary
	Index
	Figures
	Tables

